Toward the Holodeck: Computational Models of Narrative and their Relation to Human Cognition

DOE CSGF 2015 Program Review

July 30th

Rogelio E. Cardona-Rivera Ph.D. Candidate, Department of Computer Science North Carolina State University <u>recardon@ncsu.edu</u>

Acknowledgements

- My adviser, Dr. R. Michael Young and the rest of the Liquid Narrative Group (Go Younglings!)
- Gabriel Radvansky, collaborator from U. Notre Dame
- Chris Forsythe, Kiran Lakkaraju, and Jon Whetzel Sandia Albuquerque
- Krell Institute and the DOE CSGF Program & Fellows!

The Heider-Simmel Experiment

Heider, Fritz and Simmel, Marianne (1944). An Experimental Study of Apparent Behavior. The American Journal of Psychology, 57(2), pp. 243-259.

Narrative Intelligence

- We understand stories and have some intuition for what makes a good story
- Collectively, comprehension and generation make up what is known as <u>narrative intelligence</u> (NI)
- Computational modeling is well suited to precisely understand NI via artificial intelligence

Simon, H. A. (1996). The Sciences of the Artificial. MIT Press. 3rd ed.

Narrative Intelligence in Two Flavors

Computational Models of Interactive Narratives allow us to understand what is common to both areas

Narrative as a target of interpretation

Narrative as a framework for sense-making

An interactive experience in which users influence a dramatic storyline through actions by assuming the role of a character in a fictional world

What is an Interactive Narrative?

Riedl, M. O., & Bulitko, V. (2012). Interactive narrative: An intelligent systems approach. AI Magazine, 34(1), 67

A Key Interactive Narrative Challenge:

• How do we get the user to understand *her role*?

• Other roles could be afforded!

- - - - - ()-

Roadmap

- The Vision
- Automated Planning and Computational Models of Narrative
- The Experiential Goldilocks Problem and Narrative Affordances
- Approach: Plan Recognition with Narrative Memory
- Q&A

Roadmap

The Vision

- Automated Planning and Computational Models of Narrative
- The Experiential Goldilocks Problem and Narrative Affordances
- Approach: Plan Recognition with Narrative Memory
- Q&A

Automated Planning and Computational Models of Narrative

The Paradigm of Narratives as Plans

Automated Planning

- Automated planning is the computational study of problem solving (PSPACE-complete in general)
- Input:
 - Formal description (predicate logic based) of a state of the world
 - a desired goal state
 - a set of actions

With preconditions and effects

• Output: the sequence of actions that transform the current state into the desired goal state

Narrative Planning

- Narrative planning is the automated planning-based study of narrative authorship and its delivery to a story consumer
- We borrow the formalism of automated planning, but this could lead to some undesirable effects
 - NOTE: These effects are not the main focus of my work, but give a flavor of what my work tries to do

Once upon a time...

...there was a happy troll. The happy troll had an axe. The happy troll killed himself. The happy troll was dead.

- Example of an "efficient" story
- Because we borrow the paradigm of planning, we will likely find *structurally coherent stories*
 - But there are additional problems: stories ought to be *believable*, and *interesting*
 - Therefore, we must expand the knowledge representation to account for narrative-theoretic phenomena
 - In my case, the phenomena is narrative memory

The Experiential Goldilocks Problem and Narrative Affordances

Not too obscure, not too prosaic...just right.

The Elder Scrolls V: Skyrim – Understanding utterances

Discourse Generation to Elicit Action

- This example shows what my proposed Al system aims to achieve: generate discourse content that prompts action
- It can say too little (the experience is too terse)
- It can say too much (the experience is too prosaic)
- Ideal: say just enough and no more

Cardona-Rivera, R. E. & Young, R. M.; Games as Conversation. In *Proceedings of the 3rd Workshop on Games and NLP at the 10th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment*, pp. 2-8, 2014.

Foreseeing outcomes

- In this instance, you can *foresee a completion to your current story experience* given what is uttered in the game discourse
 - I call this a narrative affordance sequences of actions you foresee as completions to your interactive experience
- Some inferences are more satisfying than others
 - The Experiential Goldilocks Problem is about eliciting the right set of inferences

Young, R. M., & Cardona-Rivera, R. (2011). Approaching a Player Model of Game Story Comprehension Through Affordance in Interactive Narrative. In *Intelligent Narrative Technologies*.

Approach: Plan Recognition with Narrative Memory

Modeling inference-making as a plan recognition process

Players are Problem Solvers and Plan Recognizers

- Players make inferences because they act as a problem solvers trying to anticipate solutions to narrative situations
- Players also ascribe intent to the interactive narrative designer's plans (plan recognition – a form of problem solving)
- Key to narrative problem solving performance is the role of <u>narrative working memory</u>
 - Allows people to draw connections between concepts

Gerrig, R. J., & Bernardo, A. B. (1994). Readers as problem-solvers in the experience of suspense. *Poetics*, 22(6), 459-472.

Narrative Memory: The Event-Indexing Model

- A model of narrative comprehension with respect to memory
- As we consume stories, we discretize them into their constituent events
- We additionally "tag" these events along 5 dimensions (or indices)

GROU

Zwaan, R. A., et al. (1995). The Construction of Situation Models in Narrative Comprehension, An Event-Indexing Model. Psychological Science, 6(5):292-297.

Narrative Memory: The Event-Indexing Model

- 5 Dimensions/Indices:
- 1. Space
 - Mount Doom
- 2. Time
 - Index 2
- 3. Causality
 - Main Causal Chain
- 4. Intentions
 - Goal to destroy the ring
- 5. Entities
 - p1, ring

Zwaan, R. A., et al. (1995). The Construction of Situation Models in Narrative Comprehension, An Event-Indexing Model. Psychological Science, 6(5):292-297.

Indexter: Computational Model of the EIM

• I co-developed a computational implementation of this cognitive model in an automated planning context

$$recallability(e_i^*, q, C) = \frac{overlap(e_i^*, q)}{\sum_{e_i \in C} overlap(e_i, q)}$$
(1)
$$overlap(e_x, e_y) = \# \text{ of index values shared by } e_x \text{ and } e_y$$
(2)

 Recallability is dimensionless, but allows relative ranking between narrative events

Cardona-Rivera, R. E., & Young, R. M. (2014). A Knowledge Representation that Models Memory in Narrative Comprehension. In 28th AAAI Conference on Artificial Intelligence

Proposed Work: Constrain Plan Recognition with Narrative Memory В Α 4 Α

- Narrative memory would filter out inferences that are not related to the concepts active in narrative memory
- Algorithm development + experimental validation forthcoming!

Recap

There and back again.

Recap – Q&A Session

- Computational Models of Interactive Narratives could help identify commonalities between narratives as a target of interpretation and narrative for sense-making
- Al can help *procedurally generate content*, but it must carry the burden of a content creator; i.e. it must be sensitive to the Goldilocks Problem
- I use the paradigm of automated planning (a PSPACE problem in general) to model narrative comprehension and reasoning
- I developed a planning-based model of narrative memory
- Proposed work to use this model to inform a plan recognition based narrative inference-making model
- This inference-making model would inform discourse generation that is sensitive to the Goldilocks Problem

Rogelio E. Cardona-Rivera Ph.D. Candidate, Department of Computer Science North Carolina State University recardon@ncsu.edu

