
Understanding Corona Phase Molecular Recognition Sensors on
Single Walled Carbon Nanotubes

Zachary Ulissi
Prof. Richard Braatz & Prof. Michael Strano

Department of Chemical Engineering
Massachusetts Institute of Technology

Zachary Ulissi (MIT) Modeling/Simulation of SWCNT Sensors July, 2014 1 / 19



Modeling/Simulations in an Experimental Group

PhD situation different from most CSGF fellows

Strano Group - mostly experimental devices based on low-dimensional carbon materials
(carbon nanotubes, graphene, etc.)
Braatz Group - systems engineering, controls, applied math
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Low-dimensional Carbon Materials

Monolayer graphene

Bilayer graphene

Trilayer Graphene

Nobel Prize in Physics (2010)

Nobel Prize in Chemistry (1996)

C60 SWNT
Graphite

(1991)(1985)

All-carbon materials, but very different electronic structure.
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Single-Walled Carbon Nanotube Fluorescence

Single-Walled Carbon Nanotubes (SWCNTs) vary in diameter (0.5-2nm) and electronic
structure (metal/semi-metal/semiconductor)

SWCNTs have a very strong fluorescence signal (you can easily see single molecules in
a microscope!). Introducing defects reduces fluorescence signal.
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Diversity of Electronic Properties
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Bachillo, S., Strano, M. S. et al., Science, 298 (2002) 2361
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Corona-Phase Molecular Recognition (CoPhMoRe)

DNA (AT15)-Functionalized SWNT
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5μm

Zhang et al. JACS (2011).
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Simulations at the nano scale

Many important effects - chemistry, electronic structure, mechanical properties / strain,
local environment (surfactant or polymers)

Experimental evidence that SWCNT electronic structure affects adsorption energies
and interactions with polymers. Mechanical effects (strain etc) changes electronic
structure.

Right time/length scales for readily available simulation ability:
SWCNT unit cell can be 200-500+ atoms. Calculating electronic structure
tractable/fast with tight binding density functional theory.
SWCNT unit cell + DNA wrapping + 5 nm solution box ∼ 100,000 atoms. Tractable
for molecular dynamics.
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SWCNT Wrappings for Analyte Specificity

Large library of various polymer-analyte interactions built up in the Strano lab

Zhang et al. Nature Nanotechnology 2014. RITC=Rhodamine IsoThioCyanate. FMOC=Fluorenylmethyloxycarbonyl
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What does the corona phase look like?

Hydrophobic Anchors

Hydrophilic Chain

Hydrophobic
SWCNT Surface

Near-SWCNT Corona
(primarily corona phase anchors)

Aqueous Solution

RITCRITC PEG- -

Coarse-grained simulations of RITC-PEG-RITC on SWCNT using the Martini forcefield. Lin et al. Langmuir (2013).
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Thermodynamic Surface Adsorption Model

Model adsorption process as a thermodynamic partitioning between two phases:

For each species (polymer anchor or
analyte):

∆µi - Adsorption energy
Bij - van der Waals interactions while on
surface
xiL - mol fraction in solution
xσ

i - mol fraction on surface
ri ,ai - molecular radii/area

Mulqueen and Blankschtein, Langmuir 1999 15 (26), 8832-8848.

Assume degree of quenching ∆I/I0 ∝
analyte surface coverage.
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Parameter Estimation

To quickly predict adsorption energies and van der Waals interactions, we borrow tools
from the computational drug screening community (CGenFF for force field generation,
NAMD for molecular dynamics).
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Simulations performed on NICS/Kraken. Approximately 100,000 cpu-hours for 60 adsorption-energy calculations.
Zachary Ulissi (MIT) Modeling/Simulation of SWCNT Sensors July, 2014 11 / 19



Model Agreement
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Pre-screening with model
would increase success rate of
future experiments from 21%
to 40% by screening out
obvious combinations.
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Broader Picture
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Intracellular SWCNT Sensors

Sensor Array

Lysozome

A375 Melanoma Cell

632nm 
Excitation

Fluorescence
Emmission

AT15-Wrapped SWCNT

d(AT)15 wrapped SWCNT observed to uptake to A375 melanoma cells spontaneously,
and co-localized with the lysozome using Lysotracker Red.
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Demonstration of Nitric Oxide Sensing

Introduction of a NO-producing agent JS-K leads to SWCNT sensor quenching.
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Ulissi et al. Nano Letters (2014).
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JS-K Degradation Mechanism
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Mechanism: Shami et al. Molecular Cancer Therapeutics (2003).
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Spatio-Temporal NO Sensing

SWCNT sensors behave as point source of NIR illumination within the cell, with produced
light scattering and absorbing in media.

(NIR Intensity, log-scale)

Radial light intensity φ(r), according to

µaφ−
1

3(µa + (1− g)µs)
O2φ = Source Term

µa, µs are wavelength-dependent
scattering/absorption coefficients
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Spatio-Temporal NO Sensing
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