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Cost model for a modern computer

What is a modern computer?

a set of processing units with local memories connected over a
network

Such a computer has three fundamental architectural payloads

γ - cost for a single (floating-point) computation for one
processor (computation or flop cost)

β - cost for a transfer of each byte between any pair of
processors (bandwidth cost)

α - cost for a synchronization between any pair of processors
(latency or synchronization cost)

Today: γ � β � α, in the future: γ �� β �� α
An additional important cost, that I will not consider in this talk

ν - cost for a transfer of each byte between fast memory
(cache) and slow memory (DRAM) (γ � ν < β)
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Quantifying the cost of a parallel schedule of an algorithm

How do we quantify the execution time T of some schedule of
some algorithm, in terms of our architectural costs (γ, β, and α)?

Traditional method: “Volume measure”

F̄ – the total number of (floating-point) operations done in
the algorithm,

W̄ – the total amount of data all processors communicate,

S̄ – the total number of times processors synchronize.

The “Volume measure” yields lower and upper bounds on the
execution time:

(γ · F̄ + β · W̄ + α · S̄)/p ≤ T ≤ γ · F̄ + β · W̄ + α · S̄

where p is the number of processors.
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Quantifying the cost of an schedule

How do we quantify the execution time T of some schedule, in
terms of our architectural costs (γ, β, and α)?

Better method: “Critical path measure”

F - longest sequence of dependent or consequently performed
computations in the schedule,

W - longest sequence of dependent or consequently
performed data transfers in the schedule,

S - longest sequence of dependent of consequently performed
synchronizations (bulk requests) in the schedule.

Critical path cost yields lower and upper bounds on execution time
of the schedule,

max(γ · F , β ·W , α · S) ≤ T ≤ γ · F + β ·W + α · S .
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Example schedule
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Critical path for communication cost

Critical path synchronization cost (W )
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Critical path for synchronization cost

Critical path synchronization cost (S)
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Designing parallel algorithms

How do we find a scalable algorithm and schedule?
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Dependency graph representation of an algorithm

We can represent an algorithm as a graph G = (V ,E ) where

V includes the input, intermediate, and output values used by
the algorithm

E represents the dependencies between pairs of values

e.g. to compute c = a · b, we have a, b, c ∈ V and
(a, c), (b, c) ∈ E

A lower bound on the computation cost F is just the length
longest path in the graph, Q ⊂ G , which also bounds the amount
of available parallelism as p ≤ |V |/|Q|.
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Communication bandwidth lower bounds

For some algorithm G = (V ,E )...

we can lower bound the communication cost of the schedule, by
characterizing the expansion properties of the dependency graph

We let the vertex expansion E (G ,Z ) of a subset vertex set
Z ⊂ V be the number of vertices in V \ Z to which Z is
adjacent

A lower bound on the amount of communication required to
parallelize G on p processors is

W ≥ min
Z⊂V ,|Z |=|V |/p

E (Z ),

since some process must do at least |V |/p work.
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Path-expander graph

Definition (order-d-path-expander)

Graph G = (V ,E ) is an order-d-path-expander if it has a path
(u1, . . . un) ⊂ V , and the union of all paths between ui and ui+b

for all i , b has size Θ(bd) and a minimum cut of size Ω(bd−1).

An example of a order-2-path-expander
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Scheduling tradeoffs of path-expander graphs

Theorem (Path-expander communication lower bound)

Any schedule of an algorithm with an order-d-path-expander
dependency graph about a path of length n for some b ∈ [1, n]
incurs computation (F ), bandwidth (W ), and latency (S) costs:

F = Ω
(

n · bd−1
)
, W = Ω

(
n · bd−2

)
, S = Ω (n/b) ,

which implies the following tradeoffs:

F · Sd−1 = Ω
(

nd
)
, W · Sd−2 = Ω

(
nd−1

)
.
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Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n into a lower-triangular matrix L is

A = L · LT ,

and has dependency graph GCh = (VCh,ECh).

With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = Θ(n3/p)

bandwidth: WCh = Θ(n2/
√

cp)

synchronization: SCh = Θ(
√

cp)

WCh (bandwidth) can be shown to be optimal due to its vertex
expansion E (GCh,Z ) ≥ |Z |2/3 for any Z ⊂ VCh.
SCh (synchronization) can be shown to be optimal because GCh is
a (b2, b3)-path-expander about the path corresponding to the
calculation of the diagonal of L.
Algorithms with the same costs exist for LU, QR, SVD, etc.
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Algorithms for dense matrix factorizations

Standard algorithms for LU, QR, and SVD factorization have
communication costs

W = O(n2/
√

p) S = O(n).

The algorithms from the previous slide achieved, for c ∈ [1, p1/3],

W = O(n2/
√

cp) S = O(
√

cp).

What is necessary to achieve this?

For Cholesky, LU without pivoting, and QR via Givens
rotations: change of parallel schedule

For LU with pivoting: change of algorithm: pairwise pivoting
or tournament pivoting instead of partial pivoting

For QR via Householder transformations: change of algorithm:
‘block-Givens’ (TSQR) followed by Householder reconstruction

For SVD and the symmetric eigenproblem: change of
algorithm: successive band reduction
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Krylov subspace methods

We ‘formally’ consider the s-step Krylov subspace basis
computation

x(l) = A · x(l−1),

for l ∈ {1, . . . , s} where the graph of the symmetric sparse matrix
A is a (2m + 1)d -point stencil.

We ‘informally’ consider an s-step iterative method where nodes
(mesh points, particles, ...), in d-dimensional space, interact at
each step with all other nodes that are within distance m.
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The standard algorithm (1D 2-pt stencil diagram)

Perform one matrix vector multiplication at a time, and
synchronize each time
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The matrix-powers kernel

Avoid synchronization by blocking across matrix-vector multiplies

In general for a (2m + 1)d -point stencil, s/b invocations of the
matrix-powers kernel compute an s-dimensional Krylov subspace
basis with cost

FKr = Θ
(

md ·bd · s
)
,WKr = Θ

(
md ·bd−1 · s

)
, SKr = Θ (s/b) .

Optimal since the dependency graph of a s-step (2m + 1)d -point
stencil is a order-(d+1)-path-expander with a prefactor of md .
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Illustration of import region of the matrix-powers kernel
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Summary and conclusion

High-level points summary:

Communication cost should be the pervasive factor in the
design of new numerical algorithms

Lower bound are useful for understanding whether a better
parallelization is possible or a different algorithm is necessary

Communication cost of algorithms is dictated by dependency
graph expansion properties
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Backup slides
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2.5D LU strong scaling (without pivoting)
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Benefit of replication on BG/Q
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2.5D LU on 65,536 cores
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Parallel costs of Gauss-Jordan elimination

The floating point cost of Gauss-Jordan elimination is
F = Θ(n3/p). Our lower bounds may be applied since the
computation has the same structure as Gaussian Elimination, so

F · S2 = Ω(n3), W · S = Ω(n2).

These costs are achieved for W = O(n2/p2/3) by schedules in

Aggarwal, Chandra, and Snir 1990

Tiskin 2007

Solomonik, Buluc, and Demmel 2012
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Lower synchronization cost via path doubling

We can compute the tropical semiring closure

A∗ = I⊕ A⊕ A2 ⊕ . . .⊕ An = (I⊕ A)n,

directly via repeated squaring (path-doubling)

(I⊕ A)2k = (I⊕ A)k ⊗ (I⊕ A)k

with a total of log(n) matrix-matrix multiplications, with

F = O(n3 log(n)/p)

operations and O(log(n)) synchronizations, which can be less than
the O(p1/2) required by Floyd-Warshall.
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Tiskin’s path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations.
We can partition each Ak by path size (number of edges)

Ak = I⊕ Ak(1)⊕ Ak(2)⊕ . . .⊕ Ak(k)

where each Ak(l) contains the shortest paths of up to k ≥ l edges,
which have exactly l edges. We can see that

Al(l) ≤ Al+1(l) ≤ . . . ≤ An(l) = A∗(l),

in particular A∗(l) corresponds to a sparse subset of Al(l).
The algorithm works by picking l ∈ [k/2, k] and computing

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

which finds all paths of size up to 3k/2 by taking all paths of size
exactly l ≥ k/2 followed by all paths of size up to k .
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Path-doubling (Tiskin’s algorithm)
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Path-doubling

Earlier caveat:

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

does not hold in general. The fundamental property used by the
algorithm is really

A∗(l)⊗ A∗(k) = A∗(l + k).

All shortest paths of up to any length are composible
(factorizable), but not paths up to a limited length. However, the
algorithm is correct because Al ≤ Ak(l) ≤ A∗(k).
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Cost of Tiskin’s algorithm

Since the decomposition by path size is disjoint, one can pick
Ak(l) for l ∈ [k/2, k] to have size

|Ak(l)| ≥ 2n2/k.

Each round of path doubling becomes cheaper than the previous,
so the cost is dominated by the first matrix multiplication,

F = O(n3/p) W = O(n2/p2/3) S = O(log(n)),

solving the APSP problem with no F · S2 or W · S tradeoff and
optimal flops.
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More on Tiskin’s APSP algorithms

Tiskin gives a way to lower the synchronization from
S = O(log(n)) to O(log(p)). For nonnegative edge lengths it is
straightforward

compute Ap via path-doubling

pick a small Ap(l) for l ∈ [p/2, p]

replicate Ap(l) and compute Dijkstra’s algorithm for n/p
nodes with each process, obtaining (Ap(l))∗

compute by matrix multiplication

A∗ = (Ap(l))∗ ⊗ Ap

since all shortest paths are composed of a path of size that is
a multiple of l ≤ p, followed by a shortest path of size up to p
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