
Minimizing communication in numerical linear algebra

Edgar Solomonik

Department of Electrical and Engineering and Computer Science, UC Berkeley

Department of Energy Computational Science Graduate Fellowship Program Review

July 15, 2014

Edgar Solomonik Minimizing communication in numerical linear algebra 1/ 21

Summary

Talk thesis:

Scalable numerical algorithms and software must be designed with
a priori consideration for parallelism, communication cost, and
library abstractions.

Talk overview

A cost model for a modern computer

Quantification of algorithmic costs

Communication lower bound techniques

Dense linear algebra algorithms

Sparse linear algebra methods

Edgar Solomonik Minimizing communication in numerical linear algebra 2/ 21

Summary

Talk thesis:

Scalable numerical algorithms and software must be designed with
a priori consideration for parallelism, communication cost, and
library abstractions.

Talk overview

A cost model for a modern computer

Quantification of algorithmic costs

Communication lower bound techniques

Dense linear algebra algorithms

Sparse linear algebra methods

Edgar Solomonik Minimizing communication in numerical linear algebra 2/ 21

Cost model for a modern computer

What is a modern computer?

a set of processing units with local memories connected over a
network

Such a computer has three fundamental architectural payloads

γ - cost for a single (floating-point) computation for one
processor (computation or flop cost)

β - cost for a transfer of each byte between any pair of
processors (bandwidth cost)

α - cost for a synchronization between any pair of processors
(latency or synchronization cost)

Today: γ � β � α, in the future: γ �� β �� α
An additional important cost, that I will not consider in this talk

ν - cost for a transfer of each byte between fast memory
(cache) and slow memory (DRAM) (γ � ν < β)

Edgar Solomonik Minimizing communication in numerical linear algebra 3/ 21

Cost model for a modern computer

What is a modern computer?

a set of processing units with local memories connected over a
network

Such a computer has three fundamental architectural payloads

γ - cost for a single (floating-point) computation for one
processor (computation or flop cost)

β - cost for a transfer of each byte between any pair of
processors (bandwidth cost)

α - cost for a synchronization between any pair of processors
(latency or synchronization cost)

Today: γ � β � α, in the future: γ �� β �� α

An additional important cost, that I will not consider in this talk

ν - cost for a transfer of each byte between fast memory
(cache) and slow memory (DRAM) (γ � ν < β)

Edgar Solomonik Minimizing communication in numerical linear algebra 3/ 21

Cost model for a modern computer

What is a modern computer?

a set of processing units with local memories connected over a
network

Such a computer has three fundamental architectural payloads

γ - cost for a single (floating-point) computation for one
processor (computation or flop cost)

β - cost for a transfer of each byte between any pair of
processors (bandwidth cost)

α - cost for a synchronization between any pair of processors
(latency or synchronization cost)

Today: γ � β � α, in the future: γ �� β �� α
An additional important cost, that I will not consider in this talk

ν - cost for a transfer of each byte between fast memory
(cache) and slow memory (DRAM) (γ � ν < β)

Edgar Solomonik Minimizing communication in numerical linear algebra 3/ 21

Quantifying the cost of a parallel schedule of an algorithm

How do we quantify the execution time T of some schedule of
some algorithm, in terms of our architectural costs (γ, β, and α)?

Traditional method: “Volume measure”

F̄ – the total number of (floating-point) operations done in
the algorithm,

W̄ – the total amount of data all processors communicate,

S̄ – the total number of times processors synchronize.

The “Volume measure” yields lower and upper bounds on the
execution time:

(γ · F̄ + β · W̄ + α · S̄)/p ≤ T ≤ γ · F̄ + β · W̄ + α · S̄

where p is the number of processors.

Edgar Solomonik Minimizing communication in numerical linear algebra 4/ 21

Quantifying the cost of a parallel schedule of an algorithm

How do we quantify the execution time T of some schedule of
some algorithm, in terms of our architectural costs (γ, β, and α)?

Traditional method: “Volume measure”

F̄ – the total number of (floating-point) operations done in
the algorithm,

W̄ – the total amount of data all processors communicate,

S̄ – the total number of times processors synchronize.

The “Volume measure” yields lower and upper bounds on the
execution time:

(γ · F̄ + β · W̄ + α · S̄)/p ≤ T ≤ γ · F̄ + β · W̄ + α · S̄

where p is the number of processors.

Edgar Solomonik Minimizing communication in numerical linear algebra 4/ 21

Quantifying the cost of an schedule

How do we quantify the execution time T of some schedule, in
terms of our architectural costs (γ, β, and α)?

Better method: “Critical path measure”

F - longest sequence of dependent or consequently performed
computations in the schedule,

W - longest sequence of dependent or consequently
performed data transfers in the schedule,

S - longest sequence of dependent of consequently performed
synchronizations (bulk requests) in the schedule.

Critical path cost yields lower and upper bounds on execution time
of the schedule,

max(γ · F , β ·W , α · S) ≤ T ≤ γ · F + β ·W + α · S .

Edgar Solomonik Minimizing communication in numerical linear algebra 5/ 21

Quantifying the cost of an schedule

How do we quantify the execution time T of some schedule, in
terms of our architectural costs (γ, β, and α)?

Better method: “Critical path measure”

F - longest sequence of dependent or consequently performed
computations in the schedule,

W - longest sequence of dependent or consequently
performed data transfers in the schedule,

S - longest sequence of dependent of consequently performed
synchronizations (bulk requests) in the schedule.

Critical path cost yields lower and upper bounds on execution time
of the schedule,

max(γ · F , β ·W , α · S) ≤ T ≤ γ · F + β ·W + α · S .

Edgar Solomonik Minimizing communication in numerical linear algebra 5/ 21

Example schedule

Edgar Solomonik Minimizing communication in numerical linear algebra 6/ 21

Critical path for communication cost

Critical path synchronization cost (W)

Edgar Solomonik Minimizing communication in numerical linear algebra 7/ 21

Critical path for synchronization cost

Critical path synchronization cost (S)

Edgar Solomonik Minimizing communication in numerical linear algebra 8/ 21

Designing parallel algorithms

How do we find a scalable algorithm and schedule?

Edgar Solomonik Minimizing communication in numerical linear algebra 9/ 21

Dependency graph representation of an algorithm

We can represent an algorithm as a graph G = (V ,E) where

V includes the input, intermediate, and output values used by
the algorithm

E represents the dependencies between pairs of values

e.g. to compute c = a · b, we have a, b, c ∈ V and
(a, c), (b, c) ∈ E

A lower bound on the computation cost F is just the length
longest path in the graph, Q ⊂ G , which also bounds the amount
of available parallelism as p ≤ |V |/|Q|.

Edgar Solomonik Minimizing communication in numerical linear algebra 10/ 21

Dependency graph representation of an algorithm

We can represent an algorithm as a graph G = (V ,E) where

V includes the input, intermediate, and output values used by
the algorithm

E represents the dependencies between pairs of values

e.g. to compute c = a · b, we have a, b, c ∈ V and
(a, c), (b, c) ∈ E

A lower bound on the computation cost F is just the length
longest path in the graph, Q ⊂ G , which also bounds the amount
of available parallelism as p ≤ |V |/|Q|.

Edgar Solomonik Minimizing communication in numerical linear algebra 10/ 21

Communication bandwidth lower bounds

For some algorithm G = (V ,E)...

we can lower bound the communication cost of the schedule, by
characterizing the expansion properties of the dependency graph

We let the vertex expansion E (G ,Z) of a subset vertex set
Z ⊂ V be the number of vertices in V \ Z to which Z is
adjacent

A lower bound on the amount of communication required to
parallelize G on p processors is

W ≥ min
Z⊂V ,|Z |=|V |/p

E (Z),

since some process must do at least |V |/p work.

Edgar Solomonik Minimizing communication in numerical linear algebra 11/ 21

Path-expander graph

Definition (order-d-path-expander)

Graph G = (V ,E) is an order-d-path-expander if it has a path
(u1, . . . un) ⊂ V , and the union of all paths between ui and ui+b

for all i , b has size Θ(bd) and a minimum cut of size Ω(bd−1).

An example of a order-2-path-expander

Edgar Solomonik Minimizing communication in numerical linear algebra 12/ 21

Scheduling tradeoffs of path-expander graphs

Theorem (Path-expander communication lower bound)

Any schedule of an algorithm with an order-d-path-expander
dependency graph about a path of length n for some b ∈ [1, n]
incurs computation (F), bandwidth (W), and latency (S) costs:

F = Ω
(

n · bd−1
)
, W = Ω

(
n · bd−2

)
, S = Ω (n/b) ,

which implies the following tradeoffs:

F · Sd−1 = Ω
(

nd
)
, W · Sd−2 = Ω

(
nd−1

)
.

Edgar Solomonik Minimizing communication in numerical linear algebra 13/ 21

Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n into a lower-triangular matrix L is

A = L · LT ,

and has dependency graph GCh = (VCh,ECh).

With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = Θ(n3/p)

bandwidth: WCh = Θ(n2/
√

cp)

synchronization: SCh = Θ(
√

cp)

WCh (bandwidth) can be shown to be optimal due to its vertex
expansion E (GCh,Z) ≥ |Z |2/3 for any Z ⊂ VCh.
SCh (synchronization) can be shown to be optimal because GCh is
a (b2, b3)-path-expander about the path corresponding to the
calculation of the diagonal of L.
Algorithms with the same costs exist for LU, QR, SVD, etc.

Edgar Solomonik Minimizing communication in numerical linear algebra 14/ 21

Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n into a lower-triangular matrix L is

A = L · LT ,

and has dependency graph GCh = (VCh,ECh).
With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = Θ(n3/p)

bandwidth: WCh = Θ(n2/
√

cp)

synchronization: SCh = Θ(
√

cp)

WCh (bandwidth) can be shown to be optimal due to its vertex
expansion E (GCh,Z) ≥ |Z |2/3 for any Z ⊂ VCh.
SCh (synchronization) can be shown to be optimal because GCh is
a (b2, b3)-path-expander about the path corresponding to the
calculation of the diagonal of L.
Algorithms with the same costs exist for LU, QR, SVD, etc.

Edgar Solomonik Minimizing communication in numerical linear algebra 14/ 21

Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n into a lower-triangular matrix L is

A = L · LT ,

and has dependency graph GCh = (VCh,ECh).
With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = Θ(n3/p)

bandwidth: WCh = Θ(n2/
√

cp)

synchronization: SCh = Θ(
√

cp)

WCh (bandwidth) can be shown to be optimal due to its vertex
expansion E (GCh,Z) ≥ |Z |2/3 for any Z ⊂ VCh.

SCh (synchronization) can be shown to be optimal because GCh is
a (b2, b3)-path-expander about the path corresponding to the
calculation of the diagonal of L.
Algorithms with the same costs exist for LU, QR, SVD, etc.

Edgar Solomonik Minimizing communication in numerical linear algebra 14/ 21

Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n into a lower-triangular matrix L is

A = L · LT ,

and has dependency graph GCh = (VCh,ECh).
With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = Θ(n3/p)

bandwidth: WCh = Θ(n2/
√

cp)

synchronization: SCh = Θ(
√

cp)

WCh (bandwidth) can be shown to be optimal due to its vertex
expansion E (GCh,Z) ≥ |Z |2/3 for any Z ⊂ VCh.
SCh (synchronization) can be shown to be optimal because GCh is
a (b2, b3)-path-expander about the path corresponding to the
calculation of the diagonal of L.

Algorithms with the same costs exist for LU, QR, SVD, etc.

Edgar Solomonik Minimizing communication in numerical linear algebra 14/ 21

Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A of dimension n into a lower-triangular matrix L is

A = L · LT ,

and has dependency graph GCh = (VCh,ECh).
With p ∈ [1, n3/2] processors and a free parameter c ∈ [1, p1/3]
[Tiskin 2002] and [S., Demmel 2011] achieve the costs

computation: FCh = Θ(n3/p)

bandwidth: WCh = Θ(n2/
√

cp)

synchronization: SCh = Θ(
√

cp)

WCh (bandwidth) can be shown to be optimal due to its vertex
expansion E (GCh,Z) ≥ |Z |2/3 for any Z ⊂ VCh.
SCh (synchronization) can be shown to be optimal because GCh is
a (b2, b3)-path-expander about the path corresponding to the
calculation of the diagonal of L.
Algorithms with the same costs exist for LU, QR, SVD, etc.

Edgar Solomonik Minimizing communication in numerical linear algebra 14/ 21

Algorithms for dense matrix factorizations

Standard algorithms for LU, QR, and SVD factorization have
communication costs

W = O(n2/
√

p) S = O(n).

The algorithms from the previous slide achieved, for c ∈ [1, p1/3],

W = O(n2/
√

cp) S = O(
√

cp).

What is necessary to achieve this?

For Cholesky, LU without pivoting, and QR via Givens
rotations: change of parallel schedule

For LU with pivoting: change of algorithm: pairwise pivoting
or tournament pivoting instead of partial pivoting

For QR via Householder transformations: change of algorithm:
‘block-Givens’ (TSQR) followed by Householder reconstruction

For SVD and the symmetric eigenproblem: change of
algorithm: successive band reduction

Edgar Solomonik Minimizing communication in numerical linear algebra 15/ 21

Algorithms for dense matrix factorizations

Standard algorithms for LU, QR, and SVD factorization have
communication costs

W = O(n2/
√

p) S = O(n).

The algorithms from the previous slide achieved, for c ∈ [1, p1/3],

W = O(n2/
√

cp) S = O(
√

cp).

What is necessary to achieve this?

For Cholesky, LU without pivoting, and QR via Givens
rotations: change of parallel schedule

For LU with pivoting: change of algorithm: pairwise pivoting
or tournament pivoting instead of partial pivoting

For QR via Householder transformations: change of algorithm:
‘block-Givens’ (TSQR) followed by Householder reconstruction

For SVD and the symmetric eigenproblem: change of
algorithm: successive band reduction

Edgar Solomonik Minimizing communication in numerical linear algebra 15/ 21

Algorithms for dense matrix factorizations

Standard algorithms for LU, QR, and SVD factorization have
communication costs

W = O(n2/
√

p) S = O(n).

The algorithms from the previous slide achieved, for c ∈ [1, p1/3],

W = O(n2/
√

cp) S = O(
√

cp).

What is necessary to achieve this?

For Cholesky, LU without pivoting, and QR via Givens
rotations: change of parallel schedule

For LU with pivoting: change of algorithm: pairwise pivoting
or tournament pivoting instead of partial pivoting

For QR via Householder transformations: change of algorithm:
‘block-Givens’ (TSQR) followed by Householder reconstruction

For SVD and the symmetric eigenproblem: change of
algorithm: successive band reduction

Edgar Solomonik Minimizing communication in numerical linear algebra 15/ 21

Algorithms for dense matrix factorizations

Standard algorithms for LU, QR, and SVD factorization have
communication costs

W = O(n2/
√

p) S = O(n).

The algorithms from the previous slide achieved, for c ∈ [1, p1/3],

W = O(n2/
√

cp) S = O(
√

cp).

What is necessary to achieve this?

For Cholesky, LU without pivoting, and QR via Givens
rotations: change of parallel schedule

For LU with pivoting: change of algorithm: pairwise pivoting
or tournament pivoting instead of partial pivoting

For QR via Householder transformations: change of algorithm:
‘block-Givens’ (TSQR) followed by Householder reconstruction

For SVD and the symmetric eigenproblem: change of
algorithm: successive band reduction

Edgar Solomonik Minimizing communication in numerical linear algebra 15/ 21

Krylov subspace methods

We ‘formally’ consider the s-step Krylov subspace basis
computation

x(l) = A · x(l−1),

for l ∈ {1, . . . , s} where the graph of the symmetric sparse matrix
A is a (2m + 1)d -point stencil.

We ‘informally’ consider an s-step iterative method where nodes
(mesh points, particles, ...), in d-dimensional space, interact at
each step with all other nodes that are within distance m.

Edgar Solomonik Minimizing communication in numerical linear algebra 16/ 21

Krylov subspace methods

We ‘formally’ consider the s-step Krylov subspace basis
computation

x(l) = A · x(l−1),

for l ∈ {1, . . . , s} where the graph of the symmetric sparse matrix
A is a (2m + 1)d -point stencil.

We ‘informally’ consider an s-step iterative method where nodes
(mesh points, particles, ...), in d-dimensional space, interact at
each step with all other nodes that are within distance m.

Edgar Solomonik Minimizing communication in numerical linear algebra 16/ 21

The standard algorithm (1D 2-pt stencil diagram)

Perform one matrix vector multiplication at a time, and
synchronize each time

Edgar Solomonik Minimizing communication in numerical linear algebra 17/ 21

The matrix-powers kernel

Avoid synchronization by blocking across matrix-vector multiplies

In general for a (2m + 1)d -point stencil, s/b invocations of the
matrix-powers kernel compute an s-dimensional Krylov subspace
basis with cost

FKr = Θ
(

md ·bd · s
)
,WKr = Θ

(
md ·bd−1 · s

)
, SKr = Θ (s/b) .

Optimal since the dependency graph of a s-step (2m + 1)d -point
stencil is a order-(d+1)-path-expander with a prefactor of md .

Edgar Solomonik Minimizing communication in numerical linear algebra 18/ 21

The matrix-powers kernel

Avoid synchronization by blocking across matrix-vector multiplies

In general for a (2m + 1)d -point stencil, s/b invocations of the
matrix-powers kernel compute an s-dimensional Krylov subspace
basis with cost

FKr = Θ
(

md ·bd · s
)
,WKr = Θ

(
md ·bd−1 · s

)
, SKr = Θ (s/b) .

Optimal since the dependency graph of a s-step (2m + 1)d -point
stencil is a order-(d+1)-path-expander with a prefactor of md .

Edgar Solomonik Minimizing communication in numerical linear algebra 18/ 21

Illustration of import region of the matrix-powers kernel

Edgar Solomonik Minimizing communication in numerical linear algebra 19/ 21

Summary and conclusion

High-level points summary:

Communication cost should be the pervasive factor in the
design of new numerical algorithms

Lower bound are useful for understanding whether a better
parallelization is possible or a different algorithm is necessary

Communication cost of algorithms is dictated by dependency
graph expansion properties

Edgar Solomonik Minimizing communication in numerical linear algebra 20/ 21

Collaborators and acknowledgements

Collaborators on presented work:

Nicholas Knight, Erin Carson, James Demmel (UC Berkeley)

Grey Ballard (formerly UC Berkeley, now Sandia National Lab)

Major collaborators on other parts of thesis work:

Devin Matthews (UT Austin, CSGF fellow)

Jeff Hammond (formerly Argonne National Lab, now Intel,
CSGF alumni)

Erik Draeger (Lawrence Livermore National Lab)

Kathy Yelick (UC Berkeley, Lawrence Berkeley National Lab)

Support:

Krell DOE Computational Science Graduate Fellowship

Edgar Solomonik Minimizing communication in numerical linear algebra 21/ 21

Backup slides

Edgar Solomonik Minimizing communication in numerical linear algebra 22/ 21

2.5D LU strong scaling (without pivoting)

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

LU without pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU

Edgar Solomonik Minimizing communication in numerical linear algebra 23/ 21

Benefit of replication on BG/Q

 0

 20

 40

 60

 80

 100

 120

256 512 1024 2048 4096

G
ig

af
lo

p/
s/

no
de

#nodes

LU factorization strong scaling on Mira (BG/Q)

2.5D LU n=131,072
2D LU n=131,072

2.5D LU n= 65,536
2D LU n= 65,536

Edgar Solomonik Minimizing communication in numerical linear algebra 24/ 21

2.5D LU on 65,536 cores

 0

 20

 40

 60

 80

 100

NO-pivot 2D

NO-pivot 2.5D

CA-pivot 2D

CA-pivot 2.5D

Ti
m

e
(s

ec
)

LU on 16,384 nodes of BG/P (n=131,072)

2X faster

2X faster

compute
idle

communication

Edgar Solomonik Minimizing communication in numerical linear algebra 25/ 21

Parallel costs of Gauss-Jordan elimination

The floating point cost of Gauss-Jordan elimination is
F = Θ(n3/p). Our lower bounds may be applied since the
computation has the same structure as Gaussian Elimination, so

F · S2 = Ω(n3), W · S = Ω(n2).

These costs are achieved for W = O(n2/p2/3) by schedules in

Aggarwal, Chandra, and Snir 1990

Tiskin 2007

Solomonik, Buluc, and Demmel 2012

Edgar Solomonik Minimizing communication in numerical linear algebra 26/ 21

Lower synchronization cost via path doubling

We can compute the tropical semiring closure

A∗ = I⊕ A⊕ A2 ⊕ . . .⊕ An = (I⊕ A)n,

directly via repeated squaring (path-doubling)

(I⊕ A)2k = (I⊕ A)k ⊗ (I⊕ A)k

with a total of log(n) matrix-matrix multiplications, with

F = O(n3 log(n)/p)

operations and O(log(n)) synchronizations, which can be less than
the O(p1/2) required by Floyd-Warshall.

Edgar Solomonik Minimizing communication in numerical linear algebra 27/ 21

Tiskin’s path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations.
We can partition each Ak by path size (number of edges)

Ak = I⊕ Ak(1)⊕ Ak(2)⊕ . . .⊕ Ak(k)

where each Ak(l) contains the shortest paths of up to k ≥ l edges,
which have exactly l edges. We can see that

Al(l) ≤ Al+1(l) ≤ . . . ≤ An(l) = A∗(l),

in particular A∗(l) corresponds to a sparse subset of Al(l).
The algorithm works by picking l ∈ [k/2, k] and computing

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

which finds all paths of size up to 3k/2 by taking all paths of size
exactly l ≥ k/2 followed by all paths of size up to k .

Edgar Solomonik Minimizing communication in numerical linear algebra 28/ 21

Path-doubling (Tiskin’s algorithm)

Edgar Solomonik Minimizing communication in numerical linear algebra 29/ 21

Path-doubling

Earlier caveat:

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

does not hold in general. The fundamental property used by the
algorithm is really

A∗(l)⊗ A∗(k) = A∗(l + k).

All shortest paths of up to any length are composible
(factorizable), but not paths up to a limited length. However, the
algorithm is correct because Al ≤ Ak(l) ≤ A∗(k).

Edgar Solomonik Minimizing communication in numerical linear algebra 30/ 21

Cost of Tiskin’s algorithm

Since the decomposition by path size is disjoint, one can pick
Ak(l) for l ∈ [k/2, k] to have size

|Ak(l)| ≥ 2n2/k.

Each round of path doubling becomes cheaper than the previous,
so the cost is dominated by the first matrix multiplication,

F = O(n3/p) W = O(n2/p2/3) S = O(log(n)),

solving the APSP problem with no F · S2 or W · S tradeoff and
optimal flops.

Edgar Solomonik Minimizing communication in numerical linear algebra 31/ 21

More on Tiskin’s APSP algorithms

Tiskin gives a way to lower the synchronization from
S = O(log(n)) to O(log(p)). For nonnegative edge lengths it is
straightforward

compute Ap via path-doubling

pick a small Ap(l) for l ∈ [p/2, p]

replicate Ap(l) and compute Dijkstra’s algorithm for n/p
nodes with each process, obtaining (Ap(l))∗

compute by matrix multiplication

A∗ = (Ap(l))∗ ⊗ Ap

since all shortest paths are composed of a path of size that is
a multiple of l ≤ p, followed by a shortest path of size up to p

Edgar Solomonik Minimizing communication in numerical linear algebra 32/ 21

	Appendix

