Data-driven Design of Quantum Photonic Devices

Aaron Sisto

Stanford University July 16, 2014

Why light-driven devices?

Molecular response on the order of femtoseconds

The Age of Metamaterials

- Tunable optical properties
- Specific light-activated mechanisms

Information processing

Electronic components

Solar energy conversion

Spatial dimensions on the order of nanometers

How does light initiate device functions?

Light-harvesting

photons must first enter the material

high a month of the month of th

Creating an "exciton" (electron-hole pair)

Singly one has plan to ging ty evolve gaathier bedeen an ising gy surface energy inveltojumpte quantum

How does light initiate device functions?

Excitation energy transfer

photon energy is propagated through the material via the electronic and nuclear wavefunctions

Design of photonic devices Can natural photosynthetic systems provide

revolutionary design principles?

Strong light absorption 0

High energy transfer efficiency 0

Light-harvesting complex II (LH2)

Design of photonic devices Can natural photosynthetic systems provide revolutionary design principles?

- Functionality not fully understood 0
- Fabrication of large complexes 0 extremely difficult

Light-harvesting complex II (LH2)

Empirical exciton framework

Excitered la sente propier les

ana		E_0	$V_{0,1}^{0,1}$	$V_{0,1}^{0,2}$		$V_{0,N}^{0,2}$
sma		$(V_{0,1}^{0,1})^*$	E_1^1	0		$V_{1,N}^{1,2}$
	H =	$\left(V_{0,1}^{0,2}\right)^{*}$	0	E_{1}^{2}		$V_{1,N}^{2,2}$
mat		:	:	:	۰.	:
f		$\left(V^{0,2}_{0,N} \right)^*$	$\left(V^{1,2}_{1,N}\right)^*$	$\left(V^{2,2}_{1,N}\right)^*$		E_N^k

Cal Predict properties of the full complex fur (over 3700 atoms)!

Exciton model generation

Optimize model based on empirical training data

Linear absorption spectrum of Rhodobacter sphaeroids at 300K (E. Harel, et al., PNAS 2012)

$$V_{i,j}^{k \leftarrow 0, \ell \leftarrow 0} = \frac{1}{\varepsilon_r} \frac{M_i^{k \leftarrow 0} \cdot M_j^{\ell \leftarrow 0} - 3\epsilon_{j}}{\varepsilon_r}$$
$$E_i^k = \sum_{j \neq i} \varepsilon_j + \varepsilon_i^k + \delta$$

 $(\boldsymbol{n}_{ij} \cdot \boldsymbol{M}_i^{k \leftarrow 0}) (\boldsymbol{n}_{ij} \cdot \boldsymbol{M}_j^{\ell \leftarrow 0})$

Exciton dynamics

Atomic structure and electronic coupling direct the flow of excitation energy

Electronic structure causes nuclear reorganization

Nuclear motion induces electronic transitions

Simultaneous propagation of nuclear and electronic wavefunctions

At each timestep:

- Calculate excitonic states
- Compute nuclear forces

$$\boldsymbol{F}_{I} = -\langle \psi_{I} | \frac{\partial H_{ex}}{\partial \boldsymbol{R}} | \psi_{I} \rangle$$

and non-adiabatic couplings

$$\boldsymbol{d}_{IJ} = \frac{\langle \psi_I | \frac{\partial H_{ex}}{\partial \boldsymbol{R}} | \psi_J \rangle}{\varepsilon_J - \varepsilon_I}$$

Propagate by dt

 $i \frac{\partial}{\partial t} \Psi(\mathbf{r}, \mathbf{R}, t) = \hat{H} \Psi(\mathbf{r}, \mathbf{R}, t)$

Massively parallel atomistic simulations

Exciton dynamics

Simulation of electronic excitation and dynamics of LH2 Bchlas chromophores

Excitation at t=0 fs Exciton diffusion Coherent fluctuations

Exciton dynamics

• Spatial-energetic correlation

• Arrow of time: electronic entropy maximization

Designing photosynthetic devices

Single molecules that absorb light at the periphery and

Phenylacetylene Dendrimers

- Branched, hierarchical structure
- **Constructed from identical** subunits

Design Objectives:

- Controlled directional transport
- High quantum yield

transfer energy to the core

Materials discovery

Structure generation: Molecular combinatorics

Device performance prediction: local kernel models

Molecular design space

Acknowledgements

Stanford

- * Todd Martinez (thesis advisor)
- David Glowacki (postdoc) *

CSGF and Krell staff!

LLNL

* Chandrika Kamath (practicum advisor)

UCSF

* Graham Johnson (visualization)

Questions?

