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Radiation Transport Equation

Ideally we could easily solve the (7-dimensional) Boltzmann neutron transport equation
(and its variants):

1

v

∂ψ

∂t
+ Ω⃗ · ∇ψ + σtψ =

∫ ∞

0

∫
4π
σs(Ω⃗

′ → Ω⃗,E ′ → E )ψ dΩ⃗′dE ′ + Q , (1)

to answer all of the following questions:

Where is heat being produced in the nuclear reactor?

Am I treating this cancer effectively?

Where is the oil/gas in this well?

How am I compressing/heating this deuterium pellet?

What’s hiding in the shipping container?

...
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1-D Steady State SN Equation

Eq. (1) requires more justice than 20 minutes can give.

Instead, let’s talk about:

µd
∂ψd

∂x
+ σt(x)ψd =

σs(x)

2
ϕ(x) + Qd(x) , (2)

the steady state, mono-energetic, 1-D Cartesian geometry, SN approximation to
Eq. (1) and how solution techniques for Eq. (2) can be improved.

In Eq. (2):

ψd = ψd(x , µd)

Qd = Q(x , µd)

ϕ(x) ≈ 2π
N∑

d=1

wdψd(x , µd)
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DFEM Discretization

When we discretize Eq. (2) with discontinuous finite elements (DFEM), we get a
system of equations like this:

µdLψ⃗d + Rσt ψ⃗d =
1

2
Rσs ϕ⃗+ q⃗d + ψin f⃗

where we define the following (focusing only on µd > 0):

ψd(s) ≈ ψ̃(s)

ψ̃(s) =
P+1∑
j=1

ψjBj(s)

Bj(s) =

NP∏
k=1
k ̸=j

s − sk
sj − sk

Lij = Bi (1)Bj(1)−
∫ 1

−1

dBi

ds
Bj(s) ds

Rσ,ij =
∆x

2

∫ 1

−1
σ(s)Bi (s)Bj(s) ds

f⃗i = Bi (−1)

q⃗d ,i =
∆x

2

∫ 1

−1
Bi (s)Qd(s) ds
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Cell-wise Constant Cross Sections

If cross section is truly cell-wise constant, there is no approximation in assuming

Rσ = σM

Good examples: shielding calculations, material detection problems

There are many problems of interest where this is not the case

Cross sections are functions of temperature, density, fuel burn-up, etc.

Neutronics examples: coupled reactor physics, fuel depletion problems, ...

Radiative transfer: ICF, astrophysics, ...
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Radiative Transfer with Constant Opacities

Initial dissertation topic

SN coupled to Euler equations

First step

Test radiative transfer in MATLAB

Expected result

Replicate published calculation

Actual result

Radiation profile within visual norm
acceptance criteria

Temperature profile is not

Why? WHY?
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Figure: Cell-wise constant opacity solution
to Marshak wave problem with
σa = σt = T−3.
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Relationship Between Neutronics and Radiative Transfer

The 1-D grey radiative transfer equations are:

1

c

∂I

∂t
+ µ

∂I

∂x
+ σt I =

σs
4π
ϕ+

σa
4π

acT 4

Cv
∂T

∂t
= σa

(
ϕ− acT 4

)
Temperature equation is driven by an interaction term, σaϕ

Radiative transfer is more complicated and computationally intense than
neutronics.

.
Idea
..

......

Find a neutronics problem that exhibits behavior similar to radiative transfer
temperature profile and demonstrate that the temperature profile is not a result of my
own mistake.
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Numerical Schemes to Compare

CXS DFEM: Equally-spaced points as DFEM interpolation points, exact
integration, evaluate R using cell-wise constant (volume average) cross section

SL Gauss: Gauss quadrature as DFEM interpolation points, evaluate R using
self-lumping quadrature

SL Lobatto: Lobatto quadrature as DFEM interpolation points, evaluate R using
self-lumping quadrature

SL Newton-Cotes: Equally-spaced points as DFEM interpolation points,
evaluate R using self-lumping quadrature
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What is Lumping?

Matrix lumping, or just lumping, is a mathematical technique that can be applied
to all equations solved with DGFEM (and interpolatory basis functions)

Done to improve the “robustness” of numerical schemes

In radiation transport, we define robustness as solution positivity and resistance to
oscillations

Lumping- make diagonal matrices

Two ways to lump
...1 Collapse an exactly integrated matrix’s entries to the main diagonal
...2 Use quadrature restricted to the DFEM interpolation points
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Self-Lumping Concept

With Lagrange (interpolatory) basis functions, restricting quadrature to the DFEM
interpolation points creates a diagonal mass matrix automatically
.
Self-lumping (SL) M
..

......
Mij =

{
∆x
2 wi i = j
0 otherwise

Trivial to extend quadrature integration to include spatial variation of cross section
.
Self-lumping (SL) Rσ
..

......
Rσ,ij =

{
∆x
2 σ(si )wi i = j
0 otherwise
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Test Problem

Source-free pure absorber with:

σt(x) = c1e
c2x

Vacuum BC on the right and beam of incident flux, ψin,d , on the left side in the
direction µd . Analytic ψ is:

ψ(µd , x) = ψin,d exp

[
c1
µdc2

(1− ec2x)

]
Interaction rate, IR(x), driven only by beam:

IR(x) = σt(x)ψ(µd , x)

In results that follow, we consider µd = 1 and x ∈ [0, 1 [cm]]
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State of the Practice Solution
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Figure: Angular flux profile.
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Figure: Interaction rate profile.

Neutronics problem that exhibits blading seen in radiative transfer!!
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Surely this is well documented, right?

No. Angular flux profile is smooth. Simplified plotting can hide the blading.
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Figure: ĨR(x).
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Figure: Interpolated ĨR .
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Something Wrong with DFEM?

No. Consider the analytic solution that uses the cell-wise average cross section.
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Figure: Angular Flux.
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Is there a solution to this problem?

Yes. Self-lumping schemes do not exhibit blading. Consider linear SL Lobatto solution:
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Figure: Angular Flux.
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Figure: Cubic DFEM error convergence for ψ(x).

Summary of Convergence Orders

SL Gauss: ∝ P + 1

SL Lobatto: ∝ P + 1, less
accurate than SL Gauss

SL Newton-Cotes: ∝ 2 if odd P,
∝ 3 if even P

CXS DFEM: ∝ 2 regardless of P
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Figure: Cubic DFEM error convergence for IR(x).

Summary of Convergence Orders

SL Gauss: ∝ P + 1

SL Lobatto: ∝ P + 1, less
accurate than SL Gauss

SL Newton-Cotes: ∝ 2 if odd P,
∝ 3 if even P

CXS DFEM: ∝ 1 regardless of P
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Marshak Wave Problem with Self-Lumping
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Figure: Linear SL Lobatto solution.
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Figure: Linear, constant cross section (with
mass matrix lumping) solution.
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