Equations	Problem	Numerical Schemes	Results	The End

Cross Section Spatial Discretization for Nuclear Engineering Calculations

Peter Maginot Advisors: Jean Ragusa and Jim Morel

Texas A&M University- Department of Nuclear Engineering

CSGF Program Review July 16, 2014

Equations	Problem	Numerical Schemes	Results	The End
000	000		0000000	00
Outline				

2 Problem

③ Numerical Schemes

 Equations
 Problem
 Numerical Schemes
 Results
 The End

 ••••
 ••••
 ••••
 ••••
 ••••
 ••••
 ••••

Radiation Transport Equation

Ideally we could easily solve the (7-dimensional) Boltzmann neutron transport equation (and its variants):

$$\frac{1}{\nu}\frac{\partial\psi}{\partial t} + \vec{\Omega}\cdot\nabla\psi + \sigma_t\psi = \int_0^\infty \int_{4\pi} \sigma_s(\vec{\Omega}' \to \vec{\Omega}, E' \to E)\psi \ d\vec{\Omega}'dE' + Q, \qquad (1)$$

to answer all of the following questions:

- Where is heat being produced in the nuclear reactor?
- Am I treating this cancer effectively?
- Where is the oil/gas in this well?
- How am I compressing/heating this deuterium pellet?
- What's hiding in the shipping container?

• ...

Equations ○●○	Problem 000	Numerical Schemes	Results 0000000	The End
1-D Steady	State S_N Equation			

Eq. (1) requires more justice than 20 minutes can give.

• Instead, let's talk about:

$$\mu_d \frac{\partial \psi_d}{\partial x} + \sigma_t(x)\psi_d = \frac{\sigma_s(x)}{2}\phi(x) + Q_d(x), \qquad (2)$$

the steady state, mono-energetic, 1-D Cartesian geometry, S_N approximation to Eq. (1) and how solution techniques for Eq. (2) can be improved. In Eq. (2):

$$\psi_d = \psi_d(x, \mu_d)$$

$$Q_d = Q(x, \mu_d)$$

$$\phi(x) \approx 2\pi \sum_{d=1}^N w_d \psi_d(x, \mu_d)$$

Equations	Problem	Numerical Schemes	Results	The End
000				
	cretization			

When we discretize Eq. (2) with discontinuous finite elements (DFEM), we get a system of equations like this:

$$\mu_d \mathbf{L} \vec{\psi_d} + \mathbf{R}_{\sigma_t} \vec{\psi_d} = \frac{1}{2} \mathbf{R}_{\sigma_s} \vec{\phi} + \vec{q}_d + \psi_{in} \vec{f}$$

where we define the following (focusing only on $\mu_d > 0$):

$$\begin{split} \psi_d(s) &\approx \widetilde{\psi}(s) \\ \widetilde{\psi}(s) &= \sum_{j=1}^{P+1} \psi_j B_j(s) \\ B_j(s) &= \prod_{\substack{k=1\\k\neq j}}^{N_P} \frac{s-s_k}{s_j-s_k} \end{split} \qquad \begin{array}{c} \mathsf{L}_{ij} &= B_i(1)B_j(1) - \int_{-1}^1 \frac{dB_i}{ds}B_j(s) \ ds \\ \mathsf{R}_{\sigma,ij} &= \frac{\Delta x}{2} \int_{-1}^1 \sigma(s)B_i(s)B_j(s) \ ds \\ \vec{f}_i &= B_i(-1) \\ \vec{q}_{d,i} &= \frac{\Delta x}{2} \int_{-1}^1 B_i(s)Q_d(s) \ ds \end{split}$$

Maginot (TAMU)

Equations	Problem	Numerical Schemes	Results	The End
	000			
Cell-wise (Constant Cross S	ections		

If cross section is truly cell-wise constant, there is no approximation in assuming

 $\mathbf{R}_{\sigma} = \sigma \mathbf{M}$

• Good examples: shielding calculations, material detection problems

There are many problems of interest where this is not the case

- Cross sections are functions of temperature, density, fuel burn-up, etc.
- Neutronics examples: coupled reactor physics, fuel depletion problems, ...
- Radiative transfer: ICF, astrophysics, ...

Equations	Problem	Numerical Schemes	Results	The End
	○●○			

Radiative Transfer with Constant Opacities

Initial dissertation topic

• S_N coupled to Euler equations

First step

• Test radiative transfer in MATLAB

 $\mathsf{Expected}$ result

• Replicate published calculation

Actual result

- Radiation profile within visual norm acceptance criteria
- Temperature profile is not
- Why? WHY?

Figure: Cell-wise constant opacity solution to Marshak wave problem with $\sigma_2 = \sigma_t = T^{-3}$.

Maginot (TAMU)

Equations		Problem ○○●	Problem		Numerical Schemes		Results	The End
D L J			N 1				C	

Relationship Between Neutronics and Radiative Transfer

• The 1-D grey radiative transfer equations are:

$$\frac{1}{c}\frac{\partial I}{\partial t} + \mu \frac{\partial I}{\partial x} + \sigma_t I = \frac{\sigma_s}{4\pi}\phi + \frac{\sigma_a}{4\pi}acT^4$$
$$C_v \frac{\partial T}{\partial t} = \sigma_a \left(\phi - acT^4\right)$$

- $\bullet\,$ Temperature equation is driven by an interaction term, $\sigma_{a}\phi$
- Radiative transfer is more complicated and computationally intense than neutronics.

ldea

Find a neutronics problem that exhibits behavior similar to radiative transfer temperature profile and demonstrate that the temperature profile is not a result of my own mistake.

- **CXS DFEM**: Equally-spaced points as DFEM interpolation points, exact integration, evaluate **R** using cell-wise constant (volume average) cross section
- **SL Gauss**: Gauss quadrature as DFEM interpolation points, evaluate **R** using self-lumping quadrature
- **SL Lobatto**: Lobatto quadrature as DFEM interpolation points, evaluate **R** using self-lumping quadrature
- **SL Newton-Cotes**: Equally-spaced points as DFEM interpolation points, evaluate **R** using self-lumping quadrature

Equations	Problem	Numerical Schemes	Results	The End
		000		
What is Lumpin	g?			

- Matrix lumping, or just lumping, is a mathematical technique that can be applied to all equations solved with DGFEM (and interpolatory basis functions)
- Done to improve the "robustness" of numerical schemes
- In radiation transport, we define robustness as solution positivity and resistance to oscillations
- Lumping- make diagonal matrices
- Two ways to lump
 - **O** Collapse an exactly integrated matrix's entries to the main diagonal
 - **2** Use quadrature restricted to the DFEM interpolation points

Equations	Problem	Numerical Schemes	Results	The End
		000		
Self-Lumping	Concept			

With Lagrange (interpolatory) basis functions, restricting quadrature to the DFEM interpolation points creates a diagonal mass matrix *automatically*

Self-lumping (SL) M $M_{ij} = \begin{cases} \frac{\Delta x}{2} w_i & i = j \\ 0 & \text{otherwise} \end{cases}$

Trivial to extend quadrature integration to include spatial variation of cross section

Self-lumping (SL) \mathbf{R}_{σ}

$$\mathbf{R}_{\sigma,ij} = \left\{egin{array}{cc} rac{\Delta x}{2} \sigma(s_i) w_i & i=j \ 0 & ext{otherwise} \end{array}
ight.$$

Equations 000	Problem 000	Numerical Schemes	Results ●000000	The End
Test Problem				

• Source-free pure absorber with:

$$\sigma_t(x) = c_1 e^{c_2 x}$$

• Vacuum BC on the right and beam of incident flux, $\psi_{in,d}$, on the left side in the direction μ_d . Analytic ψ is:

$$\psi(\mu_d, x) = \psi_{\textit{in},d} \exp\left[rac{c_1}{\mu_d c_2} \left(1 - e^{c_2 x}\right)
ight]$$

• Interaction rate, IR(x), driven only by beam:

$$IR(x) = \sigma_t(x)\psi(\mu_d, x)$$

• In results that follow, we consider $\mu_d = 1$ and $x \in [0, 1 \ [cm]]$

Maginot (TAMU)

Figure: Angular flux profile.

Figure: Interaction rate profile.

Neutronics problem that exhibits blading seen in radiative transfer!!

Maginot (TAMU)

Surely this is well documented, right?

No. Angular flux profile is smooth. Simplified plotting can hide the blading.

Maginot (TAMU)

Equations	Problem	Numerical Schemes	Results	The End
000	000		000●000	00
Something Wro	ng with DFEM?			

No. Consider the analytic solution that uses the cell-wise average cross section.

Figure: Angular Flux.

Figure: Interaction Rate.

Equations 000	Problem 000	Numerical Schemes	Results 0000●00	The End 00

Is there a solution to this problem?

Yes. Self-lumping schemes do not exhibit blading. Consider linear SL Lobatto solution:

Figure: Angular Flux.

Figure: Interaction Rate.

Maginot (TAMU)

CSGF Program Review

July 16, 2014 16 / 20

Equations	Problem	Numerical Schemes	Results	The End
000	000		○○○○○●○	00
$\left\ \psi - \widetilde{\psi}\right\ _{L^2}$	2 Convergence			

Summary of Convergence Orders

- SL Gauss: $\propto P+1$
- SL Lobatto: $\propto P + 1$, less accurate than SL Gauss
- SL Newton-Cotes: \propto 2 if odd *P*, \propto 3 if even *P*
- CXS DFEM: \propto 2 regardless of P

Figure: Cubic DFEM error convergence for $\psi(x)$.

Maginot (TAMU)

Summary of Convergence Orders

- SL Gauss: $\propto P+1$
- SL Lobatto: $\propto P + 1$, less accurate than SL Gauss
- SL Newton-Cotes: \propto 2 if odd *P*, \propto 3 if even *P*
- CXS DFEM: $\propto 1$ regardless of P

Figure: Cubic DFEM error convergence for IR(x).

Equations	Problem	Numerical Schemes	Results	The End
000	000		0000000	●○

Marshak Wave Problem with Self-Lumping

Figure: Linear SL Lobatto solution.

Maginot (TAMU)

Figure: Linear, constant cross section (with mass matrix lumping) solution.

Equations	Problem	Numerical Schemes	Results	The End
000	000		0000000	○●
Thanks!				

Thanks to:

- My family- Kelli, Peter James, and Sally
- My advisors- Jean Ragusa and Jim Morel
- Krell Institute and the DOE CSGF

