Fluid Dynamics of Pyroclastic Density Currents

Mary C. Benage Josef Dufek Wim Degruyter

Georgia Institute of Technology

Wednesday July, 16 2014

DOE

DOE-CSGF Program Review 2014

Photo of Tungurahua, from http://www.posadadelarte.com/volcano.php

Motivation

- Pyroclastic Density Currents (PDCs) the most dangerous local hazard.
- Understand current dynamics and potential hazards
- No direct observations of internal forces, concentration gradients, temperature

Unzen Volcano. Photo by Setsuya Nakada, 1993 (Kyushu University)

Background

- SiO₂ melt with dissolved volatiles
- Volcanic eruptions composed of ash (micrometers), large particles, hot gases.
- Initial conditions mostly unknown
- Deposits used to infer transport process

Tungurahua

Background

3/20

Tungurahua Eruption Feb. 1, 2014

Background	4/20	
------------	------	--

Volcanic Deposits

Bac	kgr	ou	nd
-----	-----	----	----

Multiphase Numerical Models

- Quantify the forces and examine the interworking dynamics of PDCs.
 - Concentration Profiles
 - Entrainment of Air
 - Flow Transformation
 - Influence of topography

Methods

6/20

Computational Challenges

- Multiple scales of fluid flow
- Multiple concentrations
 - Dense to dilute
- Large scale 3D models
- Interaction with topography

Multiphase Numerical Models

Conservation of Mass Conservation of Thermal Energy

$$\frac{\partial}{\partial t} (\alpha_{g} \rho_{g}) + \frac{\partial}{\partial x_{i}} (\alpha_{g} \rho_{g} u_{g,i}) = 0 \qquad \alpha_{g} \rho_{g} c_{Pg} \left(\frac{\partial T_{g}}{\partial t} + u_{g,i} \frac{\partial T_{g}}{\partial x_{i}} \right) = \frac{\partial q_{g}}{\partial x_{i}} - \overline{H}_{gs}$$

$$\frac{\partial}{\partial t} (\alpha_{s} \rho_{s}) + \frac{\partial}{\partial x_{i}} (\alpha_{s} \rho_{s} u_{s,i}) = 0 \qquad \alpha_{s} \rho_{s} c_{Ps} \left(\frac{\partial T_{s}}{\partial t} + u_{s,i} \frac{\partial T_{s}}{\partial x_{i}} \right) = \frac{\partial q_{g}}{\partial x_{i}} + \overline{H}_{gs}$$
Conservation of Momentum

$$\frac{\partial}{\partial t} \left(\alpha_g \rho_g u_{g,i} \right) + \frac{\partial}{\partial x_i} \left(\alpha_g \rho_g u_{g,i} u_{g,j} \right) = \frac{\partial P_g}{\partial x_i} \delta_{ij} + \frac{\partial \tau_{g,ij}}{\partial x_j} + I_i + \alpha_g \rho_g g_i$$

$$\frac{\partial}{\partial t} \left(\alpha_s \rho_s u_{s,i} \right) + \frac{\partial}{\partial x_i} \left(\alpha_s \rho_s u_{s,i} u_{s,j} \right) = \frac{\partial P_s}{\partial x_i} \delta_{ij} + \frac{\partial \tau_{s,ij}}{\partial x_j} - I_i + \alpha_s \rho_s g_i$$

Dufek et al., 2009

Methods

Achupashal

3D	_	Dv	'n	a	m	ics	
		~)	L	-			

0.0	-					
211		VD	2	m	П	~
20		V III				

Achupashal

3D - Dynamics

11/20

Achupashal – Dense to Dilute Flow

Volum Partic 10⁻⁵ G 10⁻² B

3D - Dynamics 13/20

3D – Multiphase Models

Juive Grande – Particle Conc.

Juive Grande – Temperature

3D - Dynamics	16/20	
---------------	-------	--

Model Schematic

Cooling \rightarrow Rind Thickness

2D - Thermal Proxies	18/20	
----------------------	-------	--

Regime Diagram

2D - Thermal Proxies

L_{rind} : rind thickness (mm) L_{conduction}: conductive length scale for pyroclast transport time (mm)

τ_{transport}: time pyroclast comes to rest (s)

19/20

Conclusions

Multiphase Numerical Models:

- able to solve complex multiscale fluid dynamics
- able to match observed dynamics and deposit characteristics
- Insight into entrainment of ambient air, concentration gradients, and temperatures of PDCs
- Breadcrust bomb morphology (i.e. rind thickness) is the result of transport regime, transport properties, and pyroclast properties.
 - Numerical in-situ thermometer

Thank You

DOE-CSGF for the incredible support and opportunities
CSGF Fellows
Volcanology Group at GT

Entrainment

