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Elements of Scientific Simulation 

  We are mainly interested in scientific computing as it arises in 
simulation that requires either (1) large software systems, and (2) 
high-performance computing. Increasingly, (2)     (1). However, want 
to remind you of the larger context. 

• A science or engineering problem that requires simulation. 

• Models – must be mathematically well posed. 

• Discretizations – replacing continuous variables by a  finite number 
of discrete variables. 

• Software – correctness, performance. 

• Data – inputs, outputs. Science discoveries ! Engineering designs ! 

• Hardware. 

• People. 
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What are the Tools for HPC? 

  The skills and tools to allow you to understand (and perform) good 
software design for scientific computing. 

• Programming: expressiveness, performance, scalability to large 
software systems. 

• Data structures and algorithms as they arise in scientific 
applications. 

• Tools for organizing a large software development effort (build tools, 
source code control). 

• Debugging and data analysis tools.  
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Outline of the Talk 
  

• A little bit about hardware 

• Motifs of scientific simulation. 

• Programming and software design. 

• A little bit about plumbing: source code control, build systems, 
debugging, data analysis and visualization. 
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Memory Hierarchy 

• Take advantage of the principle of locality to: 

- Present as much memory as in the cheapest technology 

- Provide access at speed offered by the fastest technology 
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The Principle of Locality 

• The Principle of Locality: 

- Program access a relatively small portion of the address space at any 
instant of time. 

• Two Different Types of Locality: 

- Temporal Locality (Locality in Time): If an item is referenced, it will tend 
to be referenced again soon (e.g., loops, reuse) 

- so, keep a copy of recently read memory in cache. 

- Spatial Locality (Locality in Space): If an item is referenced, items whose 
addresses are close by tend to be referenced soon  
(e.g., straightline code, array access) 

- Guess where the next memory reference is going to be based on 
your access history. 

• Processors have relatively lots of bandwidth to memory, but also very 
high latency.  Cache is a way to hide latency. 

- Lots of pins, but talking over the pins is slow. 

- DRAM is cheap and slow. Banking gives you more bandwidth 



Consequences for programming 

• A common way to exploit spatial locality is to assume stride-1 
memory access 

- cache fetches a cache-line worth of memory on each cache miss 

- cache-line can be 32-512 bytes (or more soon) 

• Each cache miss causes an access to the next deeper memory 
hierarchy 

- Processor usually will sit idle while this is happening 

- When that cache-line arrives some existing data in your cache will be 
ejected (which can result in a subsequent memory access resulting in 
another cache miss.  When this event happens with high frequency it is 
called cache thrashing). 

• Caches are designed to work best for programs where data access 
has lots of simple locality. 

• All of this becomes more complicated as we introduce more 
processors on a chip. 
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Seven Motifs of Scientific Computing 

 Simulation in the physical sciences is done out using various 
combinations of the following core algorithms. 

•  Structured grids 

• Unstructured grids 

• Dense linear algebra  

• Sparse linear algebra 

• Fast Fourier transforms  

• Particles 

• Monte Carlo 

 Each of these has its own distinctive combination of computation 
and data access. 
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Structured Grids 

9 

Used to represent continuously varying 

quantities in space in terms of  values on a 

regular (usually rectangular) lattice. 

If B is a rectangle, data is stored in a contiguous block of memory. 

Typical operations are stencil operations, e.g. to compute finite 

difference approximations to derivatives. 

Small number of flops per memory access, mixture of unit stride 

and non-unit stride. 



Structured Grids 
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In practice, things can get much more 

complicated: For example, if B is a union of 

rectangles, represented as a list. 

To apply stencil operations, need to get values from neighboring 

rectangles. 

Can also have a nested hierarchy of grids, which means that 

missing values must be interpolated.  

Algorithmic / software issues: sorting, caching addressing 

information, minimizing costs of irregular computation. 



Unstructured Grids 
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• Simplest case: triangular / tetrahedral 

elements, used to fit complex geometries. 

Grid is specified as a collection of nodes, 

organized into triangles. 

 

 

 

 

• Discrete values of the function to be 

represented are defined on nodes of the 

grid.   

• Other access patterns required to solve PDE problems, e.g. find all of 

the nodes that are connect to a node by an element. Algorithmic issues: 

sorting, graph traversal. 

 



Dense Linear Algebra 

Want to solve system of equations  



Dense linear algebra 

Gaussian elimination: 

The pth row reduction costs 2 (n-p)2 

+ O(n)  flops, so that the total cost 

is  

Good for performance: unit stride 

access, and O(n) flops per word of 

data accessed. But, if you have to 

write back to main memory...  



Sparse Linear Algebra 
 

• Matrix multiplication: indirect addressing. 

Not a good fit for cache hierarchies. 

 

 

 

 

• Gaussian elimination: fills in any columm 

below a nonzero entry all the way to the 

diagonal. Can attempt to minimize this by 

reordering the variables. 

 
 • Iterative methods for sparse matrices are based on applying the matrix to 

the vector repeatedly. This avoids memory blowup from Gaussian 

elimination, but need to have a good approximate inverse to work well.  

• Diagonal scaling leads to modified compressed representation. 
 



Fast Fourier Transform 

We also have 

So the number of flops to compute              is 2 N, given that you have 



Fast Fourier Transform 

If N = 2M , we can apply this to                                                       : 

The number of flops to compute these 

smaller Fourier transforms is 

is also 2 x 2 x (N/2) = 2 N, given that you 

have the N/4 transforms. Can continue 

this process until computing 2M-1 sets of       

, each of which costs O(1) flops. So the 

total number of flops is O(M N) = O(N log 

N). The algorithm is recursive, and the 

data access pattern is complicated. Can 

be simplified by sorting (reverse bit sort), 

leading to an algorithm that can be done 

as a loop. 



Particle Methods 

  Collection of particles, either representing physical particles, or a 
discretization of a continuous field. 

  To evaluate the force for a single particle requires N 
evaluations of      , leading to an O(N2) cost per time 
step. This can be reduced to O(N log N) for continuous 
fields, or to O(N2/p) for discrete particles by various 
localization techniques. 



Software Design for Large Projects 

Competing Concerns: 

• Performance. 

• Expressiveness - how easy / difficult is it to express what you want 
the computer to do for you.  

• Maintainability. 

- Debugging. 

- Modification to do something different. 

- Ability for the other programmers on the team to pick up where you left 
off. 

- Porting to new platforms. 

 

 



Tools and Techniques 

• Strong typing + compilation. Catch large class of errors at compile 
time, rather than run time. 

• Strong scoping rules. Encapsulation, modularity. 

• Abstraction, orthogonalization. Use of libraries and layered 
design. 

 C++, Java, some dialects of Fortran support these techniques to 
various degrees well. The trick is doing so without sacrificing 
performance on the motifs given above. In the discussion here, we 
will focus on C++. 

- Strongly typed language with a mature compiler technology.  

- Powerful abstraction mechanisms. 

 

 



The built-in types 

• int, float, double, char 

• This seems pretty meager. In fact, if that’s all you had you would not 
be writing programs in C.  

- Matlab at least has Matrix and Vector 

• Adding some elements to this makes a big difference 

- Array 

- Pointer 

- Functions 

- Looping 

- Conditionals 

• Given those you can write very advanced programs. Your operating 
system, for instance. 

• But we’re doing scientific computing, where is matrix and vector ? 



Making your own types 

• But not that much richer.  What about a 3D array ? Fancier tensors 
?  What if you are not doing linear algebra…but perhaps working on 
one of the other motifs. 

• C++ lets you build User-Defined Types.  They are referred to as a 
Class. Classes are a combination of member data and member 
functions. A variable of this type is often referred to as an object.  

• Classes provide a mechanism for controlling scope. 

- Private data / functions: There are internal representations for objects 
that users usually need not concern themselves with, and that if they 
changed you probably wouldn’t use the type any differently. 

- Public data / functions: There are the functions and operations that 
manipulate this state and present an abstraction for a user.  

- Protected data / functions: intermediate between the first two, but 
closer to private than to public. 



Cut-and-Paste Coding Avoided Using Templates 

• Usually you find bugs long after you have cut and pasted the same 
bug into several source files 

• The once uniform interfaces start to diverge and users become 
frustrated 

• Awesome new functions don’t get added to all versions of your 
class 

• you end up with a LOT of code you have to maintain, document, 
and test. 



Vector as a Template Class 

template <class T> class Vector 

{ 

public: 

  ~Vector(); 

  explicit Vector(int a_dim); 

  Vector(const Vector<T>& a_rhs);  

  Vector<T> operator*(T a_x) const; 

  T  operator*(const Vector<T>& a_rhs) const; 

  T& operator[](int a_index); 

  Vector<T> operator+(Vector<T> a_rhs); 

 void push_back(cost T& val); 

private: 

  T *m_data; 

  int m_size; 

}; 



Sparse Linear Algebra 
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Want to store only non-zeros, so we use compressed storage format. 

• Represent internally as a pair of vector of vectors. 

 

• VI[j], j=0,nrow-1  VI[j][m] is the column index of (m+1)st nonzero 

entry in row j+1. 

• VR[j], j=0,nrow-1 VI[j][m] is the value of A at (j+1,VI[j]). 

 

VI[1] = {2,3} 

VR[1] = {2.3,1.4} 



SparseMatrix Class  

class SparseMatrix 

{ 

public: 

  /// set up an M rows and N columns sparse matrix 

  SparseMatrix(int a_M, int a_N); 

  /// Matrix Vector multiply.  a_v.size()==N, returns vector of size M 

  Vector<float> operator*(const Vector<float>& a_v) const; 

  ///accessor functions for get and set operations of matrix elements 

  float& operator[](int a_index[2]); 

private: 

  int m_m, m_n; 

  float m_zero; 

  Vector<Vector<float> > m_data; 

  Vector<Vector<int> >   m_colIndex; 

}; 

 

For each non-zero entry in ‘A’ we keep one float, 

and one int indicating which column it is in 

If necessary, sparse matrix automatically adds 

a new matrix element when you reference that 

location, and initializes it to zero. 

 



Using a SparseMatrix object 

 SparseMatrix A(cells-2, cells); 

 int left[2]   = {0,0}; 

 int center[2] = {0,1}; 

 int right[2]  = {0,2}; 

 for(int i=0; i<cells-2; i++, left[0]++, left[1]++, center[0]++, 
center[1]++,right[0]++, right[1]++) 

   { 

      A[left]=1; 

      A[center]=-2; 

      A[right]=1; 

   } 

vector<float> LOfPhi = A*phi; 



Options: “Buy or Build?” 

• “Buy”: use software developed and maintained by someone else. 

• “Build”: write your own.  

• Some problems are sufficiently well-characterized that there are 
bulletproof software packages freely available: LAPACK (dense 
linear algebra), FFTW. You still need to understand their properties, 
how to integrate it into your application. 

• “Build” – but what do you use as a starting point ?  

- Programming everything from the ground up. 

- Use a framework that has some of the foundational components built 
and optimized. 

• Unlike LAPACK and FFTW, frameworks typically are not “black 
boxes” – you will need to interact more deeply with them. 

 

 



Matrix-multiply, optimized several 
ways 

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops 



Plumbing 

• Build Systems (make/Gmake, config) 

• Revision Control (cvs, svn, git,…) 

• Debugging tools (gcc + gdb + emacs is the lowest common 
denominator) 

• Visualization and data analysis tools (VisIt, ParaView)  
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What’s Next ? 



More Parallelism 

NRC study:"The Future of Computer Performance: Game 

Over or Next Level?” 



The power cost of memory 

Allan Snavely,  SciDAC 2010 meeting 

Energy/Word 



 
Bytes per flop going down, access costs 
going up. 

• Adaptive meshes 

• Scalable matrix-free methods for sparse 
linear systems.  

• Changing the discretizations to trade 
bytes for flops (higher-order methods). 

• More effectively exploit mathematical 
locality to increase data locality. 

• New landscape may change model 
choices / tradeoffs (e.g. reduced 
chemistry vs. detailed chemistry). 



 
Grid resolution, problem complexity going up.  

• Applications users want same 
throughput on finer grids (computed 
years / day in climate), but CFL 
condition on time step for explicit 
methods says that dt ~ (dx)p , p at 
least 1. 

• More implicit methods (without 
increased memory footprint).  

• Reformulation of problem that more 
effectively parallelizes across state 
space. 

• Aggressive use of subcycling in time, 
locally in time, physical space, state 
space. 

 

 



 
Conclusions 

• Everything is on the table: models, algorithms, software, (maybe) 
hardware. 

• Hardware: multiple levels of communication: high-bandwidth, and low-
bandwidth / low latency. 

• Software: Languages / libraries that are sufficiently expressive of both the 
algorithms and the architecture. Dynamic, time-varying loads, coupled, 
multiple physics, multiple scales, unpredictably heterogeneous compute 
nodes. Bulk-synchronous parallelism is no longer viable. 

• Applications: continue transition from domain scientists developing low-
level components of HPC codes to writing them as a composition of 
components from professionally developed, high-performance scalable 
libraries. Reformulation of models, algorithms. 

• Increasing cost of data access leads to turning modular code into 
monolithic code. How do we preserve reusability across applications? 

• New models, algorithms and software have long lead times to have 
scientific impact – need to front-load these activities. 

• Iterative process: bootstrap from existing programming models (MPI + X), 
2013 platforms (enough threads per node). 

 



Encapsulation 

• Hiding the internals of the object protects its integrity by preventing 
users from setting the internal data of the component into an invalid 
or inconsistent state.  

- In Counter, how might a public data access result in an inconsistent 
state ? 

• A benefit of encapsulation is that it can reduce system complexity, 
and thus increases robustness, by allowing the developer to limit 
the interdependencies between software components. 

- The code presents a contract for the programmer 

- If private data has gotten messed up, you don’t have to look over your 
whole code base to determine where the mistake occurred. 

- The compiler has enforced this contract for you. 

36 

http://en.wikipedia.org/wiki/Robustness_(computer_science)


Modularity 

• Separation of Concerns 

- There is a small number of people that need to know how Counter is 
implemented.   

- There are a dozen people that need to know to use this class 

- There could be hundreds of people that just need to know this class is 
doing it’s job. 

• Improve maintainability by enforcing logical boundaries between 
components.  

 

• Modules are typically incorporated into the program through 
interfaces. 

- C++ makes this explicit with the public interface 
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Compiled vs. Interpreted 

• C/C++ is a compiled programming language.   

- A compiler turns your source code into  

- The second file (a.out) is them run afterwards to see what your program 
does. 

- The hallmarks of a compiled language are 

- This two step process. 

- The second file is in machine language (also called “a binary”, or “an 
executable”). 

• This is contrasted with interpreted languages. 

- python, matlab scripts, perl, are examples of interpreted languages.  

- All the user works with are source files. 

- Interpreted languages need another program to read and execute them  
(matlab scripts are run inside matlab, python is run inside the python virtual 
machine, shell scripts are executed by the shell program) 
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Particle Methods 

  To reduce the cost, need to localize the force calculation.  For typical 
force laws arising in classical physics, there are two cases. 

•  Short-range forces (e.g. Lennard-Jones potential). 

 

 

  The forces fall off sufficiently rapidly that the approximation                               
introduces acceptably small errors for practical values of the cutoff 
distance   .  
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Particle Methods 

•  Coulomb / Newtonian potentials 
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cannot be localized by cutoffs without 

an unacceptable loss of accuracy. 

However, the far field of a given 

particle, while not small, is smooth, 

with rapidly decaying derivatives. Can 

take advantage of that in various 

ways. In both cases, it is necessary to 

sort the particles in space, and 

organize the calculation around which 

particles are nearby / far away. 



Cache-based Processors 
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A CPU cache is used by the central processing unit of a computer to reduce the average 

time to access memory. The cache is a smaller, faster memory which stores copies of the 

data from the most frequently used main memory locations. As long as most memory 

accesses are cached memory locations, the average latency of memory accesses will be 

closer to the cache latency than to the latency of main memory. 


