

The Argonne Leadership Computing Facility

Jeff Hammond
Assistant Computational Science
Argonne Leadership Computing Facility

jhammond@anl.gov

https://wiki.alcf.anl.gov/parts/index.php/Main_Page

https://wiki.alcf.anl.gov/parts/index.php/User:Jhammond

Blue Gene/P

ALCF Blue Gene/Q and Friends

See <u>alcf.anl.gov</u> for full hardware details...

- Mira 48-rack BGQ
- Cetus 1-rack BGQ
- Vesta 2-rack BGQ
- Tukey AMD-NVIDIA-IB
- Storage 30 PB capability

The Vesta system is a 2-rack T&D machine for porting, testing and tuning. Mira (48 racks), Cetus (1-rack for debug/small queue) and Tukey are the production ecosystem that enables INCITE, etc. They share a huge filesystem for in-situ analytics.

Allocations @ LCF 60% 30% 10%						
	INCITE		ALCC		ALCF Discretional y	
Mission	High-risk, high-payoff science that requires LCF-scale resources*		High-risk, high-payoff science aligned with DOE mission		Strategic ANL and ASCR use	
Call	1x/year – (Closes June)		1x/year – (Closes February)		Rolling	
Duration	1-3 years, yearly renewal		1 year		3m,6m,1 year	
Typical Size	30 - 40 projects	10M - 100M core-hours/yr.	5 - 10 projects	1M – 75M core-hours/yr.	100s of projects	10K – 1M core-hours
Review Process	Scientific Peer-Review	Computational Readiness	Scientific Peer-Review	Computational Readiness	Strategic i feasibility	mpact and
Managed By	INCITE management committee (ALCF & OLCF)		DOE Office of Science		LCF management	

Availability

Open to all scientific researchers and organizations
* Capability >20% of cores

ALCF Scientific Accomplishments

Climate

Used leadership class, vortexfollowing calculation to more accurately predict hurricane track, to better mitigate risks.

Gas Turbines

Two-phase flow and combustion modeling identified instability mechanisms that reduce efficiency, leading to design of more efficient aircraft engines.

High-fidelity fluid flow and heat transfer simulation of nextgeneration reactor designs, aiming to reduce the need for costly experimental facilities.

Nano Catalysts

Mapped out properties of a wide range of gold nanoparticles to design catalysts for fuel cells and methane conversion.

Fusion Energy

New hybrid algorithm allowed study of physics in Fast Ignition inertial confinement fusion over a much greater density range than planned.

Materials Science

Molecular dynamics simulation explained how a minute sulfur impurity embrittles nickel—relevant to next-generation nuclear reactor design.

Paul Messina, Marta Garcia, Nichols Romero CSGF HPC Workshop

