High-Performance Numerical Tools for the Development and Scalability of High-End Computer Applications

An Overview of The DOE Advanced CompuTational Software Collection (ACTS)

Annual Conference DOE Computational Science Graduate Fellowship Washington DC, July, 25, 2012

Tony Drummond (<u>LADrummond@Ibl.gov</u>)
Computational Research Division
Lawrence Berkeley National Laboratory

acts-support@nersc.gov

OUTLINE

- Introduction to DOE ACTS Collection
- ACTS Numerical Functionality
- Use of the Tools in the ACTS Collection
- Sustainability through emerging hardware
- Summary

An Overview of the DOE ACTS Collection

Motivation - HPC Applications

- Accelerator Science
- Astrophysics
- Biology
- Chemistry
- Earth Sciences
- Materials Science
- Nanoscience
- Plasma Science

•

•

CongaNP is a parallel distributed memory code intended for the modelling and analysis of accelerator costities, which requires the solidation of generalized eigenvalue problems. A parallel exact shift-invert agreement based on PAMP ACK and Nujert J. has allowed by the solution of a problem of order 7.5 million with 204 million numeros.

Commonalities:

- Major advancements in Science
- Increasing demands for computational power
- Rely on available computational systems, languages, and software tools

An Overview of the DOE ACTS Collection

HPC Software Stack

APPLICATIONS

GENERAL PURPOSE TOOLS

PLATFORM SUPPORT TOOLS AND UTILITIES

HARDWARE

An Overview of the DOE ACTS Collection

HPC Software Stack

Omega3P is a parallel distributedmemory code intended for the modeling and analysis of accelerator cavities, which requires the solution of generalized eigenvalue problems. A parallel exact shift-invert eigensolver based on PARPACK and SuperLU has allowed for the solution of a problem of order 7.5 million with 304 million nonzeros.

APPLICATIONS

GENERAL PURPOSE TOOLS

PLATFORM SUPPORT TOOLS AND UTILITIES

HARDWARE

An Overview of the DOE ACTS Collection

Washington DC, July 25 2012

HPC Software Stack

CCA SuperLU CENERAL PURPOSETOOLS

CENERAL PURPOSETOOLS SCALAPACK Overture Global Arrays SUNDIALS SLEPC UAT PETSC OPT++ Hypre ATLAS COLLECTION Aztec_{OO} TAO

PLATFORM SUPPORT TOOLS AND UTILITIES

HARDWARE

An Overview of the DOE ACTS Collection

The DOE ACTS Collection

Goal: The Advanced CompuTational Software Collection (ACTS) makes reliable and efficient software tools more widely used, and more effective in solving the nation's engineering and scientific problems.

References:

- L.A. Drummond, O. Marques: An Overview of the Advanced CompuTational Software (ACTS) Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301, 2005
- http://acts.nersc.gov

An Overview of the DOE ACTS Collection

Speeding-Up Software Development

An Overview of the DOE ACTS Collection

Current State of DOE ACTS Collection

Category	Tool	Functionalities		
Numerical	AztecOO	Scalable linear and non-linear solvers using iterative schemes.		
	Hypre	A family of scalable preconditioners.		
	PETSc	Scalable linear and non-linear solvers and additional support for PDE related work.		
	SUNDIALS	Solvers for the solution of systems of ordinary differential equations, nonlinear algebraic equations, and differential-algebraic equations.		
	ScaLAPACK	High performance parallel dense linear algebra.		
	SLEPc	Scalable algorithms for the solution of large sparse eigenvalue problems.		
	SuperLU	Scalable direct solution of large, sparse, nonsymmetric linear systems of equations.		
	TAO	Large-scale optimization software.		
Codo Dovolonment	Global Arrays	Supports the development of parallel programs.		
Code Development	Overture	Supports the development of computational fluid dynamics codes in complex geometries.		
Run Time Support	TAU	Portable and scalable performance analyzes and tracing tools for C, C++, Fortran and Java programs.		
Library Development	ATLAS	Automatic generation of optimized numerical dense algebra for scalar processors.		
Category	Tool	Functionalities		

CategoryToolFunctionalitiesTools in ConsiderationMLMultilevel Preconditioners from TrilinosBELOSKrylov based solvers from TrilinosZoltanParallel Partitional, Data-Management and Load BalancingpOSKISparse auto-tuning library

Considering 4 more

An Overview of the DOE ACTS Collection

User Interfaces

An Overview of the DOE ACTS Collection

Computational Problem	Methodology	Algorithms	Library
Systems of Linear Equations		LU Factorization	ScaLAPACK(dense) SuperLU (sparse)
		Cholesky Factorization	ScaLAPACK
	Direct Methods	LDL ^T (Tridiagonal matrices)	ScaLAPACK
		QR Factorization	ScaLAPACK
		QR with column pivoting	ScaLAPACK
		LQ factorization	ScaLAPACK

An Overview of the DOE ACTS Collection

Linear Solvers

- □ Solution of systems of linear equations may seem easy, but is at the heart of many computational problems.
- The choice of solution methods depends on matrix characteristics.
 - Symmetric vs nonsymmetric
 - Positive definite vs indefinite
 - Dimension
 - Sparsity
 - Special structures
 - Banded; block bordered diagonal
 - Conditioning

An Overview of the DOE ACTS Collection

Linear Solvers

- □ Primary two favors of linear solvers:
 - Direct
 - Iterative
- Prefer to think of them as methods at opposite ends of a spectrum of linear solvers.
 - Preconditioned iterative methods are somewhere in between.
 - Where they are in the spectrum depends on the choice of preconditioners, including preconditioners constructed using techniques from sparse direct methods.

An Overview of the DOE ACTS Collection

Comparison Between Direct and Iterative Solvers

- Direct
 - Finite no. of ops
 - · Doesn't depend on anything
 - Pivoting may be needed to maintain stability
 - Large memory requirement
 - Complex data structure
 - Banded structure need not be optimal
 - Harder to implement
 - More communication
 - More graph problems
 - Ordering, symbolic manipulation
 - Easy to handle multiple RHS

- Iterative
 - Unknown no. of ops
 - Depend on no. of iterations
 - Preconditioning may be needed to improve convergence
 - Low memory requirement
 - Simple data structure
 - Easier to implement
 - Less communication
 - Fewer graph problems
 - Handling multiple RHS may not be easy

An Overview of the DOE ACTS Collection

Comparison Between Direct and Iterative Solvers

- Direct methods or iterative methods?
 - Depend on dimensions, sparsity, and conditioning
 - Sparse direct solvers have become very efficient.
 - Almost all sparse direct solvers are built on top of dense matrix operations.
 - Direct methods are desirable when
 - Poor conditioning
 - High accuracies are desired
 - Small dimensions ... How small is "small"?
 - > Really depend on memory requirement and time to solution
 - Solving multiple linear systems with the same matrix
 - Only one factorization required

An Overview of the DOE ACTS Collection

Computational Problem	Methodology	Algorithms	Library
Systems of Linear Equations		LU Factorization	ScaLAPACK(dense) SuperLU (sparse)
		Cholesky Factorization	ScaLAPACK
	Direct Methods	LDL ^T (Tridiagonal matrices)	ScaLAPACK
		QR Factorization	ScaLAPACK
		QR with column pivoting	ScaLAPACK
		LQ factorization	ScaLAPACK

An Overview of the DOE ACTS Collection

Computational Problem	Methodology	Algorithms	Library
Systems of Linear		Conjugate Gradient	AztecOO (Trilinos)
Equations			PETSc
(cont)		GMRES	AztecOO
			PETSc
			Hypre
		CG Squared	AztecOO
	Iterative Methods		PETSc
		Bi-CG Stab	AztecOO
			PETSc
		Quasi-Minimal Residual (QMR)	AztecOO
		Transpose Free	AztecOO
		QMR	PETSc

An Overview of the DOE ACTS Collection

Hypre

Inside Hypre (developed at LLNL)

- Algorithmic Implementations of Numerical Schemes
- Optimized platform support tools and libraries

An Overview of the DOE ACTS Collection

Hypre use of Conceptual Interfaces

Inside Hypre

	System Interfaces			
Solvers	Struct	SStruct	FEI	IJ
Jacobi	✓	✓		
SMG	✓	\checkmark		
PFMG	✓	\checkmark		
Split		\checkmark		
SysPFMG		\checkmark		
FAC		\checkmark		
Maxwell		\checkmark		
AMS		\checkmark	\checkmark	\checkmark
BoomerAMG		\checkmark	\checkmark	\checkmark
MLI		\checkmark	\checkmark	\checkmark
ParaSails		\checkmark	\checkmark	✓
Euclid		\checkmark	\checkmark	✓
PILUT		\checkmark	\checkmark	\checkmark
PCG	✓	\checkmark	\checkmark	\checkmark
GMRES	✓	\checkmark	\checkmark	\checkmark
BiCGSTAB	✓	\checkmark	\checkmark	\checkmark
Hybrid	✓	✓	✓	✓

Hypre

An Overview of the DOE ACTS Collection

Trilinos Framework

Full Vertical Solver Coverage

Optimization Unconstrained: Constrained:	Find $u\in\Re^n$ that minimizes $g(u)$ Find $x\in\Re^m$ and $u\in\Re^n$ that minimizes $g(x,u)$ s.t. $f(x,u)=0$	acado)	моосно
Bifurcation Analysis	Given nonlinear operator $F(x,u)\in\Re^{n+m}$ - For $F(x,u)=0$ find space $u\in U\ni\frac{\partial F}{\partial x}$	ies tion: S	LOCA
Transient Problems DAEs/ODEs:	Solve $f(\dot{x}(t), x(t), t) = 0$ $t \in [0, T], x(0) = x_0, \dot{x}(0) = x_0'$ for $x(t) \in \Re^n, t \in [0, T]$	nsitiviti fferentia	Rythmos
Nonlinear Problems	Given nonlinear operator $F(x)\in\Re^m o\Re$ Solve $F(x)=0$ $x\in\Re^n$	Sensi	NOX
Linear Problems Linear Equations: Eigen Problems:	Given Linear Ops (Matrices) $A,B\in\Re^{m\times n}$ Solve $Ax=b$ for $x\in\Re^n$ Solve $A\nu=\lambda B\nu$ for (all) $\nu\in\Re^n,\ \lambda\in$	(Automa	AztecOO Belos Ifpack, ML, etc Anasazi
Distributed Linear Algebra Matrix/Graph Equations Vector Problems:	Compute $y = Ax$; $A = A(G)$; $A \in \Re^{m \times n}$, $G \in \operatorname{Compute} \ y = \alpha x + \beta w$; $\alpha = \langle x, y \rangle$; $x, y \in \Re^n$	$\in \Im^{m imes n}$	Epetra Tpetra

An Overvie

nce CSGF

Washington DC, July 25 2012

Trilinos Linear Solvers

Packages	Linear Solvers/Preconditioners
Amesos	Direct sparse linear solvers
AztecOO	Krylov based iterative linear solversILU-type methods
Belos	Krylov based iterative linear solvers
CLAPS • Domain decomposition methods	
Epetra	Direct dense linear solver
IFPACK/TIFPACK	Algebraic preconditionersILU type methods
Komplex	Krylov based iterative linear solvers
Meros	Block preconditioners
ML	Multigrid methods
Teko	Block preconditioners

An Overview of the DOE ACTS Collectior

Trilinos interoperability

Library	Functionality	
SuperLU	Direct sparse linear solvers	
MUMPS	Direct sparse linear solvers	
PETSc	Epetra_PETScAlJMatrix ML accepts PETSc KSP for smoothers (fine grid only)	
:		

An Overview of the DOE ACTS Collection

PETSc's Algorithmic Functionalities

Nonlinear Solvers

Newton-based Methods

Line Search | Trust Region

Other

Time Steppers

Euler Backward Fuler

Pseudo Time Stepping

Other

Krylov Subspace Methods

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other

Preconditioners

Additive Schwartz Block Jacobi ILU ICC LU (Sequential only) Others

Matrices

Compressed
Sparse Row
(AIJ)
Blocked Compressed
Sparse Row
(BAIJ)

Block Diagonal (BDIAG)

Dense

Matrix-free

Other

Distributed Arrays

Vectors

Index Sets

Indices Block Indices

Stride

Other

An Overview of the DOE ACTS Collection

PETSc KSP Interface

- PETSc Linear System Solver Interface (KSP)
- Solve: Ax=b,
- Based on the Krylov subspace methods with the use of a preconditioning technique to accelerate the convergence rate of the numerical scheme.

KRYLOV SUBSPACE METHODS + PRECONDITIONERS

R. Freund, G. H. Golub, and N. Nachtigal. Iterative Solution of Linear Systems, pp. 57-100. ACTA Numerica. Cambridge University Press, 1992.

$$(M_L^{-1}AM_R^{-1})(M_Rx) = M_L^{-1}b,$$

For left and right preconditioning matrices, M_L and M_R , respectively

For
$$M_R = I$$

$$r_L \equiv M_L^{-1}b - M_L^{-1}Ax = M_L^{-1}r$$
 PETSC Default

Annual Conference CSGF

PETSc Interoperability with Other Packages

3. Use the runtime option: -ksp_type preonly -pc_type <pctype> -pc_factor_mat_ solver_package <packagename>. For eg: -ksp_type preonly -pc_type lu -pc_ factor_mat_solver_package superlu_dist.

MatType	PCType	MatSolverPackage	Package
			<pre>(-pc_factor_mat_solver_package)</pre>
baij	cholesky	MAT_SOLVER_DSCPACK	dscpack
seqaij	lu	MAT_SOLVER_ESSL	essl
seqaij	lu	MAT_SOLVER_LUSOL	lusol
seqaij	lu	MAT_SOLVER_MATLAB	matlab
aij	lu	MAT_SOLVER_MUMPS	mumps
sbaij	cholesky		
plapack	lu	MAT_SOVLER_PLAPACK	plapack
plapack	cholesky		
aij	lu	MAT_SOLVER_SPOOLES	spooles
sbaij	cholesky		
seqaij	lu	MAT_SOLVER_SUPERLU	superlu
aij	lu	MAT_SOLVER_SUPERLU_DIST	superlu_dist
seqaij	lu	MAT_SOLVER_UMFPACK	umfpack

Table 5: Options for External Solvers

An Overview of the DOE ACTS Collection

Computational Problem	Methodology	Algorithms	Library
Systems of Linear Equations		SYMMLQ	PETSc
(cont)	Iterative Methods (cont)	Precondition CG	AztecOO PETSc Hypre
		Richardson	PETSc
		Block Jacobi Preconditioner	AztecOO PETSc Hypre
		Point Jocobi Preconditioner	AztecOO
		Least Squares Polynomials	PETSc

An Overview of the DOE ACTS Collection

Computational Problem	Methodology	Algorithms	Library	
Systems of Linear		SOR Preconditioning	PETSc	
Equations		Overlapping Additive Schwartz	PETSc	
(cont)		Approximate Inverse	Hypre	
	Iterative Methods (cont) MultiGrid (MG) Methods	Sparse LU preconditioner	AztecOO PETSc Hypre	
		Incomplete LU (ILU) preconditioner	AztecOO	
		Least Squares Polynomials	PETSc	
		MG Preconditioner	PETSc Hypre	
		Algebraic MG	Hypre	
		Semi-coarsening	Hypre	

An Overview of the DOE ACTS Collection

Computational Problem	Methodology	Algorithm	Library
Linear Least Squares Problems	Least Squares	mín _x b - Ax ₂	ScaLAPACK
	Minimum Norm Solution	mín _x X ₂	ScaLAPACK
	Minimum Norm Least Squares	mín _x b - Ax ₂ mín _x x ₂	ScaLAPACK
Standard Eigenvalue Problem	Symmetric Eigenvalue Problem	$Az = \lambda z$ For $A=A^{H}$ or $A=A^{T}$	ScaLAPACK (dense) SLEPc (sparse)
Singular Value Problem	Singular Value Decomposition	$A = U\Sigma V^{T}$ $A = U\Sigma V^{H}$	ScaLAPACK (dense) SLEPc (sparse)
Generalized Symmetric Definite Eigenproblem	Eigenproblem	$Az = \lambda Bz$ $ABz = \lambda z$ $BAz = \lambda z$	ScaLAPACK (dense) SLEPc (sparse)

An Overview of the DOE ACTS Collection

Computational Problem	Methodology	Algorithm	Library
Non-Linear Equations	Newton Based	Line Search	PETSc
		Trust Regions	PETSc
		Pseudo-Transient Continuation	PETSc
		Matrix Free	PETSc

An Overview of the DOE ACTS Collectior

Computational Problem	Methodology	Algorithm	Library
Non-Linear		Newton	OPT++
Optimization	Newton Based		TAO
		Finite-Difference Newton	OPT++
			TAO
		Quasi-Newton	OPT++
			TAO
		Non-linear Interior Point	OPT++
			TAO
	CG	Standard Non-linear CG	OPT++
			TAO
		Limited Memory BFGS	OPT++
		Gradient Projections	TAO
	Direct Search	No derivate information	OPT++

An Overview of the DOE ACTS Collection

Computational Problem	Methodology	Algorithm	Library
Non-Linear		Newton	OPT++
Optimization	Newton Based		TAO
		Finite-Difference Newton	OPT++
			TAO
		Quasi-Newton	OPT++
			TAO
		Non-linear Interior Point	OPT++
			TAO
	CG	Standard Non-linear CG	OPT++
			TAO
		Limited Memory BFGS	OPT++
		Gradient Projections	TAO
	Direct Search	No derivate information	OPT++

An Overview of the DOE ACTS Collection

Computational Problem	Methodology	Algorithm	Library
Non-Linear Optimization (cont)	Semismoothing	Feasible Semismooth	TAO
		Unfeasible semismooth	TAO
Ordinary Differential	Integration	Adam-Moulton	CVODE (SUNDIALS)
Equations		(Variable coefficient forms)	CVODES
	Backward Differential Formula	Direct and Iterative Solvers	CVODE
			CVODES
Nonlinear Algebraic Equations	Inexact Newton	Line Search	KINSOL (SUNDIALS)
Differential Algebraic Equations	Backward Differential Formula	Direct and Iterative Solvers	IDA (SUNDIALS)

An Overview of the DOE ACTS Collection

Computational Problem	Support	Techniques	Library
Writing Parallel	riting Parallel		Global Arrays
Programs	Distributed Arrays	Grid Generation	OVERTURE
		Structured Meshes	Hypre OVERTURE PETSc
		Semi-Structured Meshes	Hypre OVERTURE

An Overview of the DOE ACTS Collection

Computational Problem	Support	Technique	Library
Profiling	Algorithmic Performance	Automatic instrumentation	PETSc
		User Instrumentation	PETSc
	Execution Performance	Automatic Instrumentation	TAU
		User Instrumentation	TAU
Code Optimization	Library Installation	Linear Algebra Tuning	ATLAS

An Overview of the DOE ACTS Collection

References

- L.A. Drummond, O. Marques: An Overview of the Advanced Computational Software (ACTS)
 Collection. ACM Transactions on Mathematical Software Vol. 31 pp. 282-301, 2005
- http://acts.nersc.gov
- http://acts.nersc.gov/events/Workshop2011

An Overview of the DOE ACTS Collection

