You Should Also Think About Complicated Things (to Improve Computation): Exorcising Numerical Ghosts from Electron Transport Calculations

> Matthew G. Reuter Oak Ridge National Laboratory July 26, 2012

A Motivational Analogy

- Suppose a computational model for heat conduction
 - Widely used
 - Provides legitimate answers for a host of problems
- A shrewd student runs a simple test...
 - 1D bar
 - Both ends at the same temperature, no heat source
 - Something's wrong
 - Code? Test? Model?
- Analogy for ghost transmission

Outline

- Electron transport in quantum systems
 - Overview & computational challenges
 - Comparison with "classical" conduction
- Illustrative examples
 - Ghosts do exist! (Ghost transmission)
 - Building a proton pack
 - Exorcising ghost transmission
- Future directions

Electron Transport

- How does current traverse a **quantum** system?
- Molecular electronics: What is the conductance of a single molecule?
 - How does the conductance scale to multiple wires?
- Fundamentals: Charge transfer / transport
 - Analytical microscopies, solar cells, catalysts, batteries

Modeling Electron Transport

- Problem: Non-equilibrium
 - Driven system (applied bias)
- Assumption:
 - Steady-state quasi-equilibrium
 - Work in energy domain (Fourier transform)

Modeling Electron Transport

- Problem: System size
 - Intractably large for quantum mechanics
- Idea: Partition the system
 - Left (big)
 - Center (manageable?)
 - Right (big)

 $\hat{\mathcal{H}}
ightarrow egin{bmatrix} \mathbf{H}_{\mathrm{LL}} & \mathbf{H}_{\mathrm{LC}} & \mathbf{0} \ \mathbf{H}_{\mathrm{CL}} & \mathbf{H}_{\mathrm{CC}} & \mathbf{H}_{\mathrm{CR}} \ \mathbf{0} & \mathbf{H}_{\mathrm{CC}} & \mathbf{H}_{\mathrm{CR}} \ \mathbf{0} & \mathbf{H}_{\mathrm{RC}} & \mathbf{H}_{\mathrm{RR}} \ \end{bmatrix}$

Scattering Theory

Chemical Physics

Computational Mathematics

- Transport: Look at change in each partition's electron population
- Only coherent (elastic) scattering
- Zero temperature
- Channels

Ι

- Try to formulate all quantities in terms of the central region
- Rely on block tridiagonal matrix structure
- ΓGΓG[†] is positive semidefinite

$$= \frac{2e}{h} \int_{E_{\rm F}-eV/2}^{E_{\rm F}+eV/2} dE \operatorname{Tr} \left[\Gamma_{\rm L}(E) \mathbf{G}_{\rm CC}(E) \Gamma_{\rm R}(E) \mathbf{G}_{\rm CC}^{\dagger}(E) \right]$$

7

Correlation functions

Imry & Landauer, Rev. Mod. Phys. **71**, S306 (1999). Thygesen, Phys. Rev. B **73**, 035309 (2006).

Coherent Electron Transport

- "Conductance as transmission"
 - Conduction channels
 - Current saturation
- Theory/computation & experiment

$$I = \frac{2e}{h} \int_{E_{\rm F} - eV/2} dET(E)$$

Quantum vs. Classical

- What if we have two channels?
 - Crosstalk
 - Eigenchannels
- Phase mismatches between channels

Reuter et al., J. Phys. Chem. Lett. 2, 1667 (2011).

Quantum Interference

- Can we make the phases cancel each other?
 - Yes! Quantum interference
 - Zero transmission (perfect insulator)
- But this is from a toy model
 - Exercise in graph theory?
 - Real physical effect?

Going Beyond Toy Models

- Use quantum chemistry codes to obtain Hamiltonian matrix
 - System partitioning
 - Maybe a little knitting involved
- These codes use (primarily) Gaussian basis sets
 - Non-orthogonal
 - Partitioning of basis functions

Brandbyge et al., Phys. Rev. B 65, 165401 (2002).

Going Beyond Toy Models (II)

- Still "conductance as transmission"
 - Formula for *T*(*E*) slightly more crunchy; no issues
 - Isolated vs. resonance states
- Basis set convergence
 - Bigger / better / "more complete" basis set should be used

Brandbyge et al., Phys. Rev. B 65, 165401 (2002).

Thinking about Interference

- Bug?
- System oddity?
- Model problem?

Herrmann et al., J. Chem. Phys. 132, 024103 (2010).

TZVP = "Big" Basis Set

The Importance of Validation

- Develop a test case
 - Vacuum tunneling
 - "Ghost" basis set
- Ghost transmission

Herrmann et al., J. Chem. Phys. **132**, 024103 (2010).

A Difficult Diagnosis

- System oddity?
- Hamiltonian?
- Overlap?
- Size of buffer region?
- Open-system boundary conditions?
 - System size, again

Herrmann et al., J. Chem. Phys. 132, 024103 (2010).

A Difficult Diagnosis (II)

- Revisiting assumptions
 - Physical
 - Coherent scattering
 - Zero temperature
 - Computational
 - Partitioning
 - Central region size

Computation vs. Physics

- Partitioning
 - Assign each basis function to one of the three regions
 - Easily implemented
 - What does the operator look like?
 - Non-orthogonal projector
 - May account for system size dependence

$$\hat{\mathcal{N}}_{\mathrm{L}} = \sum_{j \in \mathrm{L}} \sum_{k} |\varphi_{j}\rangle \left(\mathbf{S}^{-1}\right)_{j,k} \langle \varphi_{k}|$$

 $\begin{bmatrix} \mathbf{H}_{\mathrm{LL}} & \mathbf{H}_{\mathrm{LC}} & \mathbf{0} \\ \mathbf{H}_{\mathrm{CL}} & \mathbf{H}_{\mathrm{CC}} & \mathbf{H}_{\mathrm{CR}} \\ \mathbf{0} & \mathbf{H}_{\mathrm{RC}} & \mathbf{H}_{\mathrm{RR}} \end{bmatrix}$

Matrices vs. Operators

18

- Central region size
 - Corner blocks of H, S are 0
- Matrix block?
 - Operator
 - Perhaps we meant to say

$$\hat{\mathcal{N}}_{\mathrm{L}} \; \hat{\mathcal{H}} \; \hat{\mathcal{N}}_{\mathrm{R}}^{\dagger} = \hat{0}$$

Ghost transmission is a numerical short-circuit!

\mathbf{H}_{LL}	$\mathbf{H}_{ ext{LC}}$	0
\mathbf{H}_{CL}	\mathbf{H}_{CC}	\mathbf{H}_{CR}
0	$\mathbf{H}_{ ext{RC}}$	\mathbf{H}_{RR}

Size	Norm [keV]
1	1.0
2	11.7
3	0.4

Using Projection Operators

- Derivation of current formula proceeds similarly
 - Use zero projection instead of zero matrix block
- Result is computationally more expensive; requires S^{-1}
- Good opportunity to redefine projectors (orthogonal)
 - Not defined by the basis set; defined by physics
 - Should remove basis set dependence (assume completeness)
 - Requires more than standard codes output

$$\int_{z}^{z_{+}} dz \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dx \varphi_{j}(\mathbf{x})^{*} \varphi_{k}(\mathbf{x})$$

Validation

- Simple, model system
 - Chain of hydrogen atoms
- New transmissions are considerably smaller
 - More in line with expected results
 - System size dependence is removed

Summary

- Diagnosed ghost transmission in electron transport calculations
- Discovered the importance of unit testing
 - Codes, test systems, models
 - Don't lose sight of the application when doing computation!
 - Get the right answer for the right reasons

Future Directions

- Correlate chemistry with electron transport properties
- Conductance pathways
 - Disordered systems
- Reconciling experiment & computation
 - Bridge the transmission function and the current

Transport Mechanism?

Cooperative Effects?

With Many Thanks

- Robert Harrison
- Bobby Sumpter
- Wigner Fellowship Program at ORNL
- OLCF (this work used Jaguar)
- Krell Institute & DOE CSGF

