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A Motivational Analogy
• Suppose a computational model for heat conduction

• Widely used

• Provides legitimate answers for a host of problems

• A shrewd student runs a simple test...

• 1D bar

• Both ends at the same temperature, no heat source

• Something’s wrong

• Code? Test? Model?

• Analogy for ghost transmission
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Outline
• Electron transport in quantum systems

• Overview & computational challenges

• Comparison with “classical” conduction

• Illustrative examples

• Ghosts do exist! (Ghost transmission)

• Building a proton pack

• Exorcising ghost transmission

• Future directions
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Electron Transport

• How does current traverse a quantum system?

• Molecular electronics: What is the conductance of a single 
molecule?

• How does the conductance scale to multiple wires?

• Fundamentals: Charge transfer / transport

• Analytical microscopies, solar cells, catalysts, batteries
4



Modeling Electron Transport

• Problem: Non-equilibrium

• Driven system (applied bias)

• Assumption:

• Steady-state quasi-equilibrium

• Work in energy domain 
(Fourier transform)
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Modeling Electron Transport

• Problem: System size

• Intractably large for quantum 
mechanics

• Idea: Partition the system

• Left (big)

• Center (manageable?)

• Right (big)
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Scattering Theory
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Correlation functions

Open-system boundary conditions

Imry & Landauer, Rev. Mod. Phys. 71, S306 (1999).
Thygesen, Phys. Rev. B 73, 035309 (2006).

T (E)

•Transport: Look at change in 
each partition’s electron 
population

•Only coherent (elastic) 
scattering

•Zero temperature
•Channels

•Try to formulate all quantities 
in terms of the central region

•Rely on block tridiagonal 
matrix structure

•ΓGΓG† is positive semi-
definite
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Coherent Electron Transport
• “Conductance as transmission”

• Conduction channels

• Current saturation

• Theory/computation & 
experiment
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Quantum vs. Classical

• What if we have two 
channels?

• Crosstalk

• Eigenchannels

• Phase mismatches between 
channels
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Quantum Interference

• Can we make the phases cancel 
each other?

• Yes! Quantum interference

• Zero transmission (perfect 
insulator)

• But this is from a toy model

• Exercise in graph theory?

• Real physical effect?
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That is, we define the couplings, t#$, as

t#$!E" ' %
i

V#,i
L!

†

!E"Gi,i
r!!E"Vi,$

R!!E" , !14"

where VL!R"! are transformed by the same transformations as
!L!R"!. From this expression we can define a useful quantity
t#$i=V#,i

L!†!E"Gi,i
r!!E"Vi,$

R! which means that the coupling can
then be written as

t#$!E" = %
i

t#$i. !15"

Now we have the result that the total transmission is given
but the sum of contributions through each of the molecular
conductance orbitals: each of the t#$ is given as a single
index sum of the contributions !t#$i" from each of the eigen-
functions of Gr. Previous attempts to separate the transmis-
sion into contributions of individual molecular conductance
orbitals failed to yield such a simple picture as the transmis-
sion was dominated by interference between pairs of
orbitals.35 Similarly, this expression provides a number of
advantages for calculating coupling. Generally the donor/
acceptor coupling is given by a series expansion; however,
by diagonalizing Gr the series reduces to a single index sum.
It should be noted that basis rotations that do not preserve the
diagonal nature of Gr! will result in the recovery of the two-
index sum; consequently, the interpretation that follows is
restricted to the case that Gr! is diagonal. Through the use of
this permutation of the equations the transmission and cou-
pling through a molecule can be expressed as a sum of the
contributions from each of the molecular conductance
orbitals.

The transmission phase can be determined from the cou-
pling, t#$

%#$!E" = arctan#Im!t#$!E""/Re!t#$!E""$ . !16"

It is also possible to examine the phase of each of the con-
stituent components of each t#$i

%#$i!E" = arctan#Im!t#$i!E""/Re!t#$i!E""$ . !17"

We treat arctan as a multivalued function, continuously mov-
ing onto the next Riemann sheet each time the branch cut is
passed. This then defines the phase of the transmission
through each molecular conductance orbital as a function of
energy. Note that, unlike t#$, in general, %#$!E"!%i%#$i!E".

As it is not obvious how to calculate !L!R" in a simple
fashion, we can proceed with our analysis using the scatter-
ing theory expression shown in Eq. !8" and substitute the
transformed form of t#$ as shown in Eq. !14" in the place of
t#$. We assume the wide band approximation !constant den-
sity of states" for our electrodes in all plots. We plot the total
transmission through this system as %#,$&t#$!E"&2, although
in all the examples considered here there is only a single site
binding.

The simplest system to illustrate the usefulness of the
quantities discussed above is a two-site model system. In
fact, we compare two model systems, the two-site model
connected to the electrodes at each end !1" and the two-site
model connected to both electrodes from the same site !2",
illustrated in the inset to Fig. 1. The two-site model is de-
scribed by a Hückel Hamiltonian

Hm = (# $

$ #
) , !18"

with site energies # and couplings $, these are set to 0 and
−0.5, respectively. The single nonzero coupling element be-
tween the site and each electrode also set to −0.5.

Although these two models contain the same “mol-
ecule,” their transmission characteristics differ considerably
as shown in Fig. 1. The two systems have the same reso-
nances; this is to be expected as the position of these largely
correlates with the position of the molecular orbitals of the
isolated molecule, which is obviously identical in these
cases. However, the behavior on either side of the resonances
differs. Above and below the energy of the resonances 2 has
a higher transmission than 1, this can be understood as 2 has
only one site in the transport direction whereas 1 has two.
Between the resonances 2 has dramatically lower transmis-
sion than 1 due to the large interference feature at E=0. This
is the model system which corresponds to the transmission
behavior seen in branched structures15,18,19 and cross-
conjugated molecules.36 This interference feature leads to
unexpected consequences; particularly, it counters the con-
ventional wisdom that transmission decreases with increas-
ing bridge length. Importantly, the formalism introduced in
the previous section provides the tools to understand how
this occurs. The validity of the Landauer form of Eq. !1" is
assumed in this work. When electron correlation on the mol-
ecule becomes important37 this may fail, and so may our
interpretation.

FIG. 1. !Color online" The transmission through the two two-site models.

054701-3 Quantum interference in coherent molecular conduction J. Chem. Phys. 129, 054701 "2008#

Downloaded 07 May 2010 to 129.105.55.225. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Solomon et al., J. Chem. Phys. 129, 054701 (2008).



Going Beyond Toy Models

• Use quantum chemistry codes to 
obtain Hamiltonian matrix

• System partitioning

• Maybe a little knitting involved

• These codes use (primarily) 
Gaussian basis sets

• Non-orthogonal

• Partitioning of basis functions
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Brandbyge et al., Phys. Rev. B 65, 165401 (2002).

Lately, there have been several approaches which treat the
entire system on the same footing, at the atomic level,28–30
but so far only one of the approaches has been applied to the
nonequilibrium situation where the external leads have dif-
ferent electrochemical potentials.31,32
The starting point for our implementation is the SIESTA

electronic structure approach.33 In this method the effect of
the core electrons is described by soft norm-conserving
pseudopotentials34 and the electronic structure of the valence
electrons is expanded in a basis set of numerical atomic or-
bitals with finite range.35,36 The quality of the basis set can
be improved at will by using multiple-! orbitals, polarization
functions, etc.,36 allowing us to achieve convergence of the
results to the desired level of accuracy. SIESTA has been
tested in a wide variety of systems, with excellent results.37,38
The great advantage of using orbitals with finite range "be-
sides the numerical efficiency33# is that the Hamiltonian in-
teractions are strictly zero beyond some distance, which al-
lows us to partition the system unambiguously, and define
regions where we will do different parts of the calculation as
we describe in Secs. II–IV. Besides, the Hamiltonian takes
the same form as in empirical tight-binding calculations, and
therefore the techniques developed in this context can be
straightforwardly applied.
We have extended the SIESTA computational package to

nonequilibrium systems by calculating the density matrix
with a nonequilibrium Green’s-functions technique.39,40,14,31
We have named this nonequilibrium electronic structure code
TRANSIESTA. Preliminary results obtained with TRANSIESTA
were presented in Ref. 41. Here we give a detailed account
of the technical implementation and present results for the
transport properties of different atomic scale systems. One of
the authors "J.T.# has been involved in the independent de-
velopment of a package, MCDCAL,32 which is based on simi-
lar principles, but with some differences in implementation.
We compare results obtained with the two packages for a
carbon wire connected to aluminum electrodes and show that
they yield similar results. We present results for atomic gold
wire systems which are one of the most studied atomic scale
conductors, and finally we present results for transport in
nanotubes with defects.
The organization of the paper is the following. In the first

part of the paper we describe how we divide our system into
the contact and electrode parts and how we obtain the den-
sity matrix for the nonequilibrium situation using Green’s-
functions. Here we also discuss the relation between the scat-
tering state approach and the nonequilibrium Green’s-
function expression for the density matrix. Then we describe
how this is implemented in the numerical procedures and
how we solve the Poisson equation in the case of finite bias.
In the second part of the paper we turn to the applications
where our aim is to illustrate the method and show some of
its capabilities rather than presenting detailed analysis of our
findings. We compare our results with other ab initio calcu-
lations or experiments for "i# carbon wires connected to alu-
minum electrodes, "ii# gold wires connected to gold elec-
trodes, and finally "iii# infinite carbon nanotubes containing
defects.

II. SYSTEM SETUP

We will consider the situation sketched in Fig. 1"a#. Two
semi-infinite electrodes, left and right, are coupled via a con-
tact region. All matrix elements of the Hamiltonian or over-
lap integrals between orbitals on atoms situated in different
electrodes are zero so the coupling between the left and right
electrodes takes place via the contact region only.
The region of interest is thus separated into three parts,

left (L), contact "C# and right (R). The atoms in L "R# are
assumed to be the parts of the left "right# semi-infinite bulk
electrodes with which the atoms in region C interact. The
Hamiltonian is assumed to be converged to the bulk values in
region L and R along with the density matrix. Thus the
Hamiltonian, density, and overlap matrices only differ from
bulk values in the C, C-L , and C!R parts. We can test this
assumption by including a larger fraction of the electrodes in
C "so the L and R regions are positioned further away from
the surfaces in Fig. 1#.
In order to obtain the transport properties of the system,

we only need to describe the finite L-C-R part of the infinite
system as illustrated in Fig. 1"b#. The density matrix which
describes the distribution of electrons can be obtained from a
series of Green’s-function matrices of the infinite system as
we will discuss in detail in Sec. III. In principle the Green’s-
function matrix involves the inversion of an infinite matrix
corresponding to the infinite system with all parts of the
electrodes included. We are, however, only interested in the
finite L-C-R part of the density matrix and thus of the
Green’s-function matrix. We can obtain this part by inverting
the finite matrix,

FIG. 1. "a# We model the contact "C# region coupled to two
semi-infinite left "L# and right "R# electrodes. The direction of trans-
port is denoted by z. "b# We only describe a finite section of the
infinite system: Inside the L and R parts the Hamiltonian matrix
elements have bulk electrode values. The external "buffer# region,
B, is not directly relevant for the calculation.
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Going Beyond Toy Models (II)

• Still “conductance as 
transmission”

• Formula for T(E) slightly more 
crunchy; no issues

• Isolated vs. resonance states

• Basis set convergence

• Bigger / better / “more 
complete” basis set should be 
used

12
Brandbyge et al., Phys. Rev. B 65, 165401 (2002).

tained by Lang and Avouris46 for Jellium electrodes, but in
good agreement with results from MCDCAL.64
To facilitate a more direct comparison between the meth-

ods we show in Fig. 6 the transmission coefficient of system
A calculated both within TRANSIESTA !solid" and MCDCAL
!dotted". For both methods, we have used identical basis sets
and pseudopotentials. However, several technical details in
the implementations differ and may lead to small differences
in the transmission spectra. The main implementation differ-
ences between the two methods are related to the calculation
of Hamiltonian parameters for the electrode region, the solu-
tion of the Poisson’s equation, and the complex contours
used to obtain the electron charge.65 Thus there are many
technical differences in the two methods, and we therefore
find the close agreement in Fig. 6 very satisfactory.
In Fig. 7 we show the corresponding transmission coeffi-

cients for system B. It can be seen that the transmission
coefficient for zero bias at #!$ is close to 1 for both sys-
tems, thus they have similar conductance. However, the de-
tails in the transmission spectra differs much from system A.
In order to get some insight into the origin of the different
features we have projected the self-consistent Hamiltonian
onto the carbon orbitals, and diagonalized this subspace

Hamiltonian to find the position of the carbon eigenstates in
the presence of the Al electrodes. Within the energy window
shown in Figs. 6 and 7 we find four doubly degenerate %
states (3% ,4% ,5% ,6%). The positions of the eigenstates are
indicated above the transmission curves. Each doubly degen-
erate state can contribute to the transmission with 2 at most.
Generally, the position of the carbon % states give rise to a
slow variation in the transmission coefficient, and the fast
variation is related to the coupling between different scatter-
ing states in the electrodes and the carbon % states. For in-
stance, in system A, there are two energy intervals &"1.9,
"1.7' and &0.7,1.4', where the transmission coefficient is
zero, and the scattering states in these energy intervals are
therefore not coupling to the carbon wire. Note how these
zero transmission intervals are doubled at finite bias, since
the scattering states of the left and right electrode are now
displaced.
The energy dependence of the transmission coefficient is

quite different in system B compared to system A. This is

FIG. 5. !a" The seven-atom carbon chain with finite cross sec-
tion Al!100" electrodes !system A". !b" The carbon chain with
Al(100)-(2!2#2!2) electrodes !system B". !c" The effective po-
tential of system A !dashed" and system B !solid", together with the
effective potential of the corresponding bare electrode systems. !d"
The self-consistent effective potential for an external bias of 1 V
!the zero-bias effective potential has been subtracted".

FIG. 6. !a" Zero-bias transmission coefficient, T(E ,0 V), for
the seven-atom carbon chain with finite cross section Al!100" elec-
trodes !system A". !b" Transmission coefficient at 1 V, T(E ,1 V).
Solid lines show results obtained with TRANSIESTA, and dotted lines
results obtained with MCDCAL. The vertical dashed lines indicated
the window between $L and $R . The position of the eigenstates of
the carbon wire subsystem are also indicated at the top axis.

FIG. 7. Transmission coefficients, T(E ,0 V) and T(E ,1 V) for
the seven-atom carbon chain with Al(100)-(2!2#2!2) electrodes
!system B". The position of the eigenstates of the carbon wire sub-
system are also indicated at the top axis.
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Thinking about Interference
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Herrmann et al., J. Chem. Phys. 132, 024103 (2010).

Interference

No Interference

for the syn conformation suggests that the transmission pre-
dicted by the full TZVP calculation is not the molecule-
specific one we are interested in !see also Sec. VI for further
discussion". Thus, it is possible that ghost transmission may
qualitatively alter predictions in transport calculations. Of
course, the importance of the ghost basis problem is system
specific. For instance, for the analogous silane !right-hand
side of Fig. 3", the TZVP curve for the syn conformation
shows the typical flat region characteristic of significant
ghost transmission, leading to quantitative differences be-
tween the TZVP and the LANL2DZ basis sets. Nonetheless,
the same qualitative conclusions—that the all-anti conforma-
tion has a higher transmission over a broad energy range—
can be drawn from both basis sets.

When relating the ghost transmission at the estimated
Fermi energy of !5.0 eV for the alkane and the silane in the
syn conformation to the distance between the gold electrodes
!14.36 Å for the alkane and 19.84 Å for the silane", a !some-
what naive" decay constant of 0.28 Å−1 is obtained, which is
close to the value of 0.35 Å−1 obtained in a more consistent

fashion in the supplementary material.63 Of course, as will be
discussed in Sec. VI, both values are far from typical decay
constants for vacuum junctions, and thus the exponential de-
cay alone should not be interpreted as giving ghost transmis-
sion physical relevance.

For the syn-silane, subtracting the ghost transmission
from the TZVP curve brings it close to the LANL2DZ curve
and thus at least partially fixes the problem !assuming that
the errors introduced by the incompleteness of the
LANL2DZ basis set are smaller than the ones introduced by
ghost transmission for the TZVP basis set". In the case of the
alkanes, however, subtracting the ghost transmission obvi-
ously still leads to the qualitative conclusion that both con-
formations have the same transmission. The corrected curve
for the syn conformation !which is shown on the left-hand
side of Fig. 3" also deviates by about an order of magnitude
from the LANL2DZ one. Thus, while it appears as a practi-
cal approximate way to correct for ghost transmission by
subtracting it in cases where ghost transmission is only mod-
erately !up to an order of magnitude" higher than the full
transmission !as estimated by the LANL2DZ curve", this
method is not applicable to more critical cases such as the
alkanes discussed here.

IV. EXPLAINING GHOST TRANSMISSION
IN A SMALL MODEL SYSTEM

While it may appear that a practical solution is to calcu-
late the ghost transmission for each junction and subtract itFIG. 4. Ball-and-stick model of the AuuH4

ghostuAu model junction.
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FIG. 3. Transmission for !a" octanedithiolate chains in two different conformations and !b" their silane analogs using Au9 clusters to mimic the coupling to
gold electrodes. The LANL2DZ ghost transmission is in all cases too low to be displayed. KS-DFT!BP86"; various Gaussian-type atom-centered basis sets.
Electronic structure program: QCHEM.
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for the syn conformation suggests that the transmission pre-
dicted by the full TZVP calculation is not the molecule-
specific one we are interested in !see also Sec. VI for further
discussion". Thus, it is possible that ghost transmission may
qualitatively alter predictions in transport calculations. Of
course, the importance of the ghost basis problem is system
specific. For instance, for the analogous silane !right-hand
side of Fig. 3", the TZVP curve for the syn conformation
shows the typical flat region characteristic of significant
ghost transmission, leading to quantitative differences be-
tween the TZVP and the LANL2DZ basis sets. Nonetheless,
the same qualitative conclusions—that the all-anti conforma-
tion has a higher transmission over a broad energy range—
can be drawn from both basis sets.

When relating the ghost transmission at the estimated
Fermi energy of !5.0 eV for the alkane and the silane in the
syn conformation to the distance between the gold electrodes
!14.36 Å for the alkane and 19.84 Å for the silane", a !some-
what naive" decay constant of 0.28 Å−1 is obtained, which is
close to the value of 0.35 Å−1 obtained in a more consistent

fashion in the supplementary material.63 Of course, as will be
discussed in Sec. VI, both values are far from typical decay
constants for vacuum junctions, and thus the exponential de-
cay alone should not be interpreted as giving ghost transmis-
sion physical relevance.

For the syn-silane, subtracting the ghost transmission
from the TZVP curve brings it close to the LANL2DZ curve
and thus at least partially fixes the problem !assuming that
the errors introduced by the incompleteness of the
LANL2DZ basis set are smaller than the ones introduced by
ghost transmission for the TZVP basis set". In the case of the
alkanes, however, subtracting the ghost transmission obvi-
ously still leads to the qualitative conclusion that both con-
formations have the same transmission. The corrected curve
for the syn conformation !which is shown on the left-hand
side of Fig. 3" also deviates by about an order of magnitude
from the LANL2DZ one. Thus, while it appears as a practi-
cal approximate way to correct for ghost transmission by
subtracting it in cases where ghost transmission is only mod-
erately !up to an order of magnitude" higher than the full
transmission !as estimated by the LANL2DZ curve", this
method is not applicable to more critical cases such as the
alkanes discussed here.

IV. EXPLAINING GHOST TRANSMISSION
IN A SMALL MODEL SYSTEM

While it may appear that a practical solution is to calcu-
late the ghost transmission for each junction and subtract itFIG. 4. Ball-and-stick model of the AuuH4

ghostuAu model junction.
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Bigger basis set defies chemical 
intuition!

• Bug?

• System oddity?

• Model problem?

LANL2DZ = “Small” Basis Set
TZVP = “Big” Basis Set

for the syn conformation suggests that the transmission pre-
dicted by the full TZVP calculation is not the molecule-
specific one we are interested in !see also Sec. VI for further
discussion". Thus, it is possible that ghost transmission may
qualitatively alter predictions in transport calculations. Of
course, the importance of the ghost basis problem is system
specific. For instance, for the analogous silane !right-hand
side of Fig. 3", the TZVP curve for the syn conformation
shows the typical flat region characteristic of significant
ghost transmission, leading to quantitative differences be-
tween the TZVP and the LANL2DZ basis sets. Nonetheless,
the same qualitative conclusions—that the all-anti conforma-
tion has a higher transmission over a broad energy range—
can be drawn from both basis sets.

When relating the ghost transmission at the estimated
Fermi energy of !5.0 eV for the alkane and the silane in the
syn conformation to the distance between the gold electrodes
!14.36 Å for the alkane and 19.84 Å for the silane", a !some-
what naive" decay constant of 0.28 Å−1 is obtained, which is
close to the value of 0.35 Å−1 obtained in a more consistent

fashion in the supplementary material.63 Of course, as will be
discussed in Sec. VI, both values are far from typical decay
constants for vacuum junctions, and thus the exponential de-
cay alone should not be interpreted as giving ghost transmis-
sion physical relevance.

For the syn-silane, subtracting the ghost transmission
from the TZVP curve brings it close to the LANL2DZ curve
and thus at least partially fixes the problem !assuming that
the errors introduced by the incompleteness of the
LANL2DZ basis set are smaller than the ones introduced by
ghost transmission for the TZVP basis set". In the case of the
alkanes, however, subtracting the ghost transmission obvi-
ously still leads to the qualitative conclusion that both con-
formations have the same transmission. The corrected curve
for the syn conformation !which is shown on the left-hand
side of Fig. 3" also deviates by about an order of magnitude
from the LANL2DZ one. Thus, while it appears as a practi-
cal approximate way to correct for ghost transmission by
subtracting it in cases where ghost transmission is only mod-
erately !up to an order of magnitude" higher than the full
transmission !as estimated by the LANL2DZ curve", this
method is not applicable to more critical cases such as the
alkanes discussed here.

IV. EXPLAINING GHOST TRANSMISSION
IN A SMALL MODEL SYSTEM

While it may appear that a practical solution is to calcu-
late the ghost transmission for each junction and subtract itFIG. 4. Ball-and-stick model of the AuuH4

ghostuAu model junction.
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the LDOS of the 6s band as calculated for gold.84 Our imple-
mentation is based on a finite-cluster approach, i.e., the mol-
ecule is attached to two finite clusters of metal atoms on each
side !see Fig. 1", and no periodic boundary conditions are
enforced.

For all calculations reported here, we use approach C in
Fig. 1 with Au9 clusters mimicking the coupling to a Au!111"
surface according to Eq. !4", and with the Green’s functions
of the bulk electrodes described by Eq. !6" !see Appendix C
for details".

Testing the basis set limit using more sophisticated de-
scriptions of the transport—for example, the gold cluster
sizes of up to 500 atoms as used in Ref. 50—would make
such a study almost prohibitive within the computational re-
sources available today. It may be anticipated, however, that
the main basis set effects can be observed regardless of
which model is used to describe the open-boundary condi-
tions of a molecular junction, which is why we focus on a
simple implementation of the WBL approximation in this
work.

The only quantities needed from an electronic structure
code are therefore the overlap matrix S and the one-particle
Hamiltonian matrix !i.e., the Fock matrix" H for a molecule
coupled to a finite number of electrode atoms on two sides.
Since our focus is on the molecule, the central region of our
setup contains either the molecule only or the molecule and a
few electrode atoms. This causes problems with the band
lineup,50 but may be considered an acceptable trade-off for
having the transmission properties of the molecule filtered
out. The coupling matrices VR,L in Eq. !4" are the elements of
the Fock matrix in the central region-electrode blocks. Fur-
thermore, the open nature of the system and the effect of any
bias voltage are not taken into account in the electronic
structure calculations, i.e., the density matrix in the self-
consistent field !SCF" algorithm is calculated, as usual in
electronic structure theory of closed systems, from the MO
coefficients, and not from the central subsystem block of the
lesser Green’s function as often done for open systems.48,49,75

This allows a transport code to be constructed as a postpro-
cessing tool for electronic structure calculations. That is, our
transport calculations consist of two steps: !1" electronic
structure calculation and !2" calculation of transmission
function and, if desired, current and conductance.

C. Ghost transmission

In this work, two types of transport calculations are car-
ried out, denoted as “full” and “ghost.” A full transport cal-
culation corresponds to the regular approach described
above, where a molecule is put between two metal clusters
and the transmission !and current" are subsequently calcu-
lated. In a ghost transport calculation, the same metal-
molecule-metal junction is considered, but all atomic nuclei
and electrons associated with atoms in the central region are
removed in the electronic structure calculation, so that all
that remains are the basis functions centered on these atoms
!see Fig. 2".

This corresponds to the ghost basis employed in the
counterpoise correction scheme for the basis set superposi-

tion error.85 It should be noted that depending on the number
of atoms in the electrode, these ghost transmission calcula-
tions may have to be carried out in a different spin state from
the full ones—for example, when employing Au9 clusters as
done here, the full calculations were carried out with no un-
paired electrons, while the ghost transmission was calculated
having two unpaired electrons !one on each gold cluster".
For the remainder of this paper, the ghost transmission
curves will always be reported for spin up electrons, because
only minor differences were obtained for the spin down elec-
trons. Convergence of the SCF algorithm has been found to
be difficult in some cases, but the resulting ghost transmis-
sion curves were not affected to any significant extent by
convergence issues.

As detailed below, we will show that the transmission
curves of transport calculations using large atom-centered
basis sets may be interpreted approximately as the sum of a
molecular transmission and the ghost transmission. We there-
fore consider the ghost transmission as significant when it is
large enough that when subtracted from the full transmission,
the shape of the transmission curve changes substantively.

III. GHOST TRANSMISSION IN ALKANE
AND SILANE JUNCTIONS

A striking example of the ghost transmission problem is
the comparison of transport calculations for octanedithiolate
in two different conformations, one with all carbon centers in
an anti conformation, and one with two of them in a syn
conformation to form a local U-shaped structure !see left
panel of Fig. 3".

Whereas a calculation using the double-zeta quality ba-
sis set LANL2DZ gives the qualitative prediction that the
transmission function of the all-anti conformation is higher
than the syn one at all energies considered, the transmission
is predicted to be about the same for both conformations
when employing the triple-zeta basis set with polarization
functions TZVP for all energies above !5.5 eV, a range
which encompasses all common choices for the Fermi en-
ergy within a KS-DFT approach.

When calculating the transmission using the ghost basis
setup described in Sec. II C, significant values can be ob-
tained, despite the fact that no molecule is present in the
junction. The ghost transmission is nearly constant over the
energy range considered, and it is about the same for both
conformations. The similarity in the transmission curves ob-
tained from the full and the ghost basis TZVP calculations

full ghost

FIG. 2. Schematic illustration of the ghost basis setup for a model junction
consisting of a Au–H–H–H–H–Au chain, where the central region is defined
as the four H atoms. While a full calculation !left" contains both the basis
functions !for simplicity, only one p function per atom is shown, denoted by
the blue lobes" and the atomic nuclei with all electrons associated with the
neutral atoms !denoted by golden and red circles", the ghost calculation
!right" has the atomic nuclei and the electrons removed in the central region.
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for the syn conformation suggests that the transmission pre-
dicted by the full TZVP calculation is not the molecule-
specific one we are interested in !see also Sec. VI for further
discussion". Thus, it is possible that ghost transmission may
qualitatively alter predictions in transport calculations. Of
course, the importance of the ghost basis problem is system
specific. For instance, for the analogous silane !right-hand
side of Fig. 3", the TZVP curve for the syn conformation
shows the typical flat region characteristic of significant
ghost transmission, leading to quantitative differences be-
tween the TZVP and the LANL2DZ basis sets. Nonetheless,
the same qualitative conclusions—that the all-anti conforma-
tion has a higher transmission over a broad energy range—
can be drawn from both basis sets.

When relating the ghost transmission at the estimated
Fermi energy of !5.0 eV for the alkane and the silane in the
syn conformation to the distance between the gold electrodes
!14.36 Å for the alkane and 19.84 Å for the silane", a !some-
what naive" decay constant of 0.28 Å−1 is obtained, which is
close to the value of 0.35 Å−1 obtained in a more consistent

fashion in the supplementary material.63 Of course, as will be
discussed in Sec. VI, both values are far from typical decay
constants for vacuum junctions, and thus the exponential de-
cay alone should not be interpreted as giving ghost transmis-
sion physical relevance.

For the syn-silane, subtracting the ghost transmission
from the TZVP curve brings it close to the LANL2DZ curve
and thus at least partially fixes the problem !assuming that
the errors introduced by the incompleteness of the
LANL2DZ basis set are smaller than the ones introduced by
ghost transmission for the TZVP basis set". In the case of the
alkanes, however, subtracting the ghost transmission obvi-
ously still leads to the qualitative conclusion that both con-
formations have the same transmission. The corrected curve
for the syn conformation !which is shown on the left-hand
side of Fig. 3" also deviates by about an order of magnitude
from the LANL2DZ one. Thus, while it appears as a practi-
cal approximate way to correct for ghost transmission by
subtracting it in cases where ghost transmission is only mod-
erately !up to an order of magnitude" higher than the full
transmission !as estimated by the LANL2DZ curve", this
method is not applicable to more critical cases such as the
alkanes discussed here.

IV. EXPLAINING GHOST TRANSMISSION
IN A SMALL MODEL SYSTEM

While it may appear that a practical solution is to calcu-
late the ghost transmission for each junction and subtract itFIG. 4. Ball-and-stick model of the AuuH4

ghostuAu model junction.
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for the syn conformation suggests that the transmission pre-
dicted by the full TZVP calculation is not the molecule-
specific one we are interested in !see also Sec. VI for further
discussion". Thus, it is possible that ghost transmission may
qualitatively alter predictions in transport calculations. Of
course, the importance of the ghost basis problem is system
specific. For instance, for the analogous silane !right-hand
side of Fig. 3", the TZVP curve for the syn conformation
shows the typical flat region characteristic of significant
ghost transmission, leading to quantitative differences be-
tween the TZVP and the LANL2DZ basis sets. Nonetheless,
the same qualitative conclusions—that the all-anti conforma-
tion has a higher transmission over a broad energy range—
can be drawn from both basis sets.

When relating the ghost transmission at the estimated
Fermi energy of !5.0 eV for the alkane and the silane in the
syn conformation to the distance between the gold electrodes
!14.36 Å for the alkane and 19.84 Å for the silane", a !some-
what naive" decay constant of 0.28 Å−1 is obtained, which is
close to the value of 0.35 Å−1 obtained in a more consistent

fashion in the supplementary material.63 Of course, as will be
discussed in Sec. VI, both values are far from typical decay
constants for vacuum junctions, and thus the exponential de-
cay alone should not be interpreted as giving ghost transmis-
sion physical relevance.

For the syn-silane, subtracting the ghost transmission
from the TZVP curve brings it close to the LANL2DZ curve
and thus at least partially fixes the problem !assuming that
the errors introduced by the incompleteness of the
LANL2DZ basis set are smaller than the ones introduced by
ghost transmission for the TZVP basis set". In the case of the
alkanes, however, subtracting the ghost transmission obvi-
ously still leads to the qualitative conclusion that both con-
formations have the same transmission. The corrected curve
for the syn conformation !which is shown on the left-hand
side of Fig. 3" also deviates by about an order of magnitude
from the LANL2DZ one. Thus, while it appears as a practi-
cal approximate way to correct for ghost transmission by
subtracting it in cases where ghost transmission is only mod-
erately !up to an order of magnitude" higher than the full
transmission !as estimated by the LANL2DZ curve", this
method is not applicable to more critical cases such as the
alkanes discussed here.

IV. EXPLAINING GHOST TRANSMISSION
IN A SMALL MODEL SYSTEM

While it may appear that a practical solution is to calcu-
late the ghost transmission for each junction and subtract itFIG. 4. Ball-and-stick model of the AuuH4

ghostuAu model junction.
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• System oddity?

• Hamiltonian?

• Overlap?

• Size of buffer region?

• Open-system boundary 
conditions?

• System size, again
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A Difficult Diagnosis (II)
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• Revisiting assumptions

• Physical

• Coherent scattering

• Zero temperature

• Computational

• Partitioning

• Central region size
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Computation vs. Physics
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• Partitioning

• Assign each basis function to 
one of the three regions

• Easily implemented

• What does the operator look 
like?

• Non-orthogonal projector

• May account for system size 
dependence
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Matrices vs. Operators
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• Central region size

• Corner blocks of H, S are 0

• Matrix block?

• Operator

• Perhaps we meant to say
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Using Projection Operators
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• Derivation of current formula proceeds similarly

• Use zero projection instead of zero matrix block

• Result is computationally more expensive; requires S-1

• Good opportunity to redefine projectors (orthogonal)

• Not defined by the basis set; defined by physics

• Should remove basis set dependence (assume 
completeness)

• Requires more than standard codes output
Lately, there have been several approaches which treat the
entire system on the same footing, at the atomic level,28–30
but so far only one of the approaches has been applied to the
nonequilibrium situation where the external leads have dif-
ferent electrochemical potentials.31,32
The starting point for our implementation is the SIESTA

electronic structure approach.33 In this method the effect of
the core electrons is described by soft norm-conserving
pseudopotentials34 and the electronic structure of the valence
electrons is expanded in a basis set of numerical atomic or-
bitals with finite range.35,36 The quality of the basis set can
be improved at will by using multiple-! orbitals, polarization
functions, etc.,36 allowing us to achieve convergence of the
results to the desired level of accuracy. SIESTA has been
tested in a wide variety of systems, with excellent results.37,38
The great advantage of using orbitals with finite range "be-
sides the numerical efficiency33# is that the Hamiltonian in-
teractions are strictly zero beyond some distance, which al-
lows us to partition the system unambiguously, and define
regions where we will do different parts of the calculation as
we describe in Secs. II–IV. Besides, the Hamiltonian takes
the same form as in empirical tight-binding calculations, and
therefore the techniques developed in this context can be
straightforwardly applied.
We have extended the SIESTA computational package to

nonequilibrium systems by calculating the density matrix
with a nonequilibrium Green’s-functions technique.39,40,14,31
We have named this nonequilibrium electronic structure code
TRANSIESTA. Preliminary results obtained with TRANSIESTA
were presented in Ref. 41. Here we give a detailed account
of the technical implementation and present results for the
transport properties of different atomic scale systems. One of
the authors "J.T.# has been involved in the independent de-
velopment of a package, MCDCAL,32 which is based on simi-
lar principles, but with some differences in implementation.
We compare results obtained with the two packages for a
carbon wire connected to aluminum electrodes and show that
they yield similar results. We present results for atomic gold
wire systems which are one of the most studied atomic scale
conductors, and finally we present results for transport in
nanotubes with defects.
The organization of the paper is the following. In the first

part of the paper we describe how we divide our system into
the contact and electrode parts and how we obtain the den-
sity matrix for the nonequilibrium situation using Green’s-
functions. Here we also discuss the relation between the scat-
tering state approach and the nonequilibrium Green’s-
function expression for the density matrix. Then we describe
how this is implemented in the numerical procedures and
how we solve the Poisson equation in the case of finite bias.
In the second part of the paper we turn to the applications
where our aim is to illustrate the method and show some of
its capabilities rather than presenting detailed analysis of our
findings. We compare our results with other ab initio calcu-
lations or experiments for "i# carbon wires connected to alu-
minum electrodes, "ii# gold wires connected to gold elec-
trodes, and finally "iii# infinite carbon nanotubes containing
defects.

II. SYSTEM SETUP

We will consider the situation sketched in Fig. 1"a#. Two
semi-infinite electrodes, left and right, are coupled via a con-
tact region. All matrix elements of the Hamiltonian or over-
lap integrals between orbitals on atoms situated in different
electrodes are zero so the coupling between the left and right
electrodes takes place via the contact region only.
The region of interest is thus separated into three parts,

left (L), contact "C# and right (R). The atoms in L "R# are
assumed to be the parts of the left "right# semi-infinite bulk
electrodes with which the atoms in region C interact. The
Hamiltonian is assumed to be converged to the bulk values in
region L and R along with the density matrix. Thus the
Hamiltonian, density, and overlap matrices only differ from
bulk values in the C, C-L , and C!R parts. We can test this
assumption by including a larger fraction of the electrodes in
C "so the L and R regions are positioned further away from
the surfaces in Fig. 1#.
In order to obtain the transport properties of the system,

we only need to describe the finite L-C-R part of the infinite
system as illustrated in Fig. 1"b#. The density matrix which
describes the distribution of electrons can be obtained from a
series of Green’s-function matrices of the infinite system as
we will discuss in detail in Sec. III. In principle the Green’s-
function matrix involves the inversion of an infinite matrix
corresponding to the infinite system with all parts of the
electrodes included. We are, however, only interested in the
finite L-C-R part of the density matrix and thus of the
Green’s-function matrix. We can obtain this part by inverting
the finite matrix,

FIG. 1. "a# We model the contact "C# region coupled to two
semi-infinite left "L# and right "R# electrodes. The direction of trans-
port is denoted by z. "b# We only describe a finite section of the
infinite system: Inside the L and R parts the Hamiltonian matrix
elements have bulk electrode values. The external "buffer# region,
B, is not directly relevant for the calculation.
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Validation
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• Simple, model system

• Chain of hydrogen atoms

• New transmissions are considerably smaller

• More in line with expected results

• System size dependence is removed
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Summary
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• Diagnosed ghost transmission in electron transport 
calculations

• Discovered the importance of unit testing

• Codes, test systems, models

• Don’t lose sight of the application when doing 
computation!

• Get the right answer for the right reasons



Future Directions
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• Correlate chemistry with electron transport properties

• Conductance pathways

• Disordered systems

• Reconciling experiment & computation

• Bridge the transmission function and the current
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0.6 0.8 1.0 1.2
Transport Mechanism?

Cooperative Effects?
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