Think deeply on simple things (with computation):

Optimal Filling of Shapes

Dr. Carolyn L. Phillips
Rahman Postdoctoral Fellow
Computation Institute
Argonne National Laboratory

Research done in the Glotzer Group at University of Michigan

Babies are fascinated by shape

So are Physicists

Make everything as simple as possible, but not simpler.

-Albert Einstein

Lars Onsager (1903-1976)

The Brazil Nut Problem

Shaped Nanoparticles

20 nm

Star of David-shaped nanomaterial. (Credit: Image courtesy of Hebrew
University of Jerusalem)

Champion, Katare, Mitragotri, PNAS, 2007

[^0]

Shape in Computation

GPU Accelerated Many Particle Dynamics Code www.codeblue.umich.edu/hoomd-blue

= blue

1 GPU ~ 30-100 CPUs with Infiniband
Molecular Dynamics (and especially HOOMD) is very good at:

- Radially Shifted

Isotropic Pair Potentials

- Rigid Body Integration

Assume a Spherical Cow. Assume a Cubical Cow?

Assume MORE Spherical Cows.

Tetrahedron

Glotzer Group Research in Tetrahedra

Dense crystalline dimer packing of regular tetrahedra, Chen, Engel, Glotzer, Discrete Computational Geoemtery, 2010

Packing Tetrahedra
to form a quasi-crystal, HajiAckbari, Engel, Glotzer, Nature, 2009

How do I make this

from the smallest number of these

Not the Answer!

Filling

- A class of optimization problems involving packing simple objects inside a container, where the objects are permitted to overlap each other without restriction.
- The aim is to find the maximal coverage of the interior of the container.
- Our simple object are n-balls with varying diameters.

The problem (make it simpler)

How do I make this
from the smallest number of these

!!! Let's drop a dimension !!!

Genetic Algorithm

The best solutions are "mated" to make children solutions. The worst are thrown away.

We create a population of random solutions. Each solution has a genome $\{\mathrm{x} 1, \mathrm{y} 1, \mathrm{r} 1$, $\mathrm{x} 2, \mathrm{y} 2, \mathrm{r} 2, \ldots\}$

We repeat until the process has converged
centers + radius

Conjecture: There is only at most, one local maximum per way of partitioning N discs over the pieces

Number of searches for local $\underline{\text { maxima } \sim} \sim \mathrm{O}\left(\mathrm{N}^{\mathrm{K}-\mathrm{J}-1}\right)$

210111
ABCDEF

$\mathrm{O}\left(\mathrm{N}^{4}\right)$

Assume the best way to partition N discs over the pieces is near the best way of partitioning N-1 discs

A few more tricks

- As N gets large, junctions stay occupied
- Occupied junctions divide filling space into smaller independent spaces
- Cache solved sub-problems

$$
\begin{gathered}
\sim \mathrm{O}(\mathrm{~N}) \text { with a } \\
\text { coefficient of } 1!!!
\end{gathered}
$$

$$
\Delta \Delta \Delta M B
$$

$N=1$

$N=2$

$N=5$

$N=5$

$N=8$

$N=21$

	HA and GA Way Match	Best Way: HA	Best Way: GA	Best $\phi:$ HA
Convex	98.1%	1.9%	0%	100%
Concave	92.97%	3.4%	3.63%	96.37%

Filler

A freely distributed code for generating optimal filling solutions for convex and concave polygons.

Simulating shaped particles with MD
In this picture, there is only circles...

Tetrahedron

Other Applications

- Designing colloidal particles
- Compact data representation
- Designing shaped wave fronts
- Material removal (lasers with tunable beams)

Figure 1. Schematic of merging of (A) liquid protrusions or (B) wetting layers, yielding colloidal molecules.

Kraft, Vlug, van Kats, van Blaaderen, Imhof, Kegel ,Self-Assembly of Colloids with Liquid Protrusions. JACS., 2009, 131 (3), 1182-1186

Acknowledgements

$$
\begin{aligned}
& \text { In Memory of Dr. Sally Ride } \\
& \text { 1951-2012 }
\end{aligned}
$$

Funding
Department of Energy Computational Science
Graduate Fellowship
Department of Energy, Office of Science, Basic
Energy Sciences, (DE - FG02-02ER4600)
Prof. Sharon Glotzer and the Glotzer Lab and useful discussions with Beth Chen, Amir Haji-Akbari, Michael Engel
The Cartooning Genius of Ben Schultz ZZOOUND http://codeblue.umich.edu'hoomd-bluel =blue
VMD
http://www.ks.uiuc.edu/Research/vmd/

[^0]: Sun, Xia Science, 2002

