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Figure 2: Husimi vectors for 32 equally-space points in k-
space, are shown at left for two wavefunct ions at right : the

complex plane wave ( A ) and the cosine wave ( B ) defined
in Eq. 21. The uncertainty for each project ion corresponds

to ∆ k/ k = 2%(a), 10%(b), 50%(c), 250%(d), corresponding to
smaller wavepacket spreads (middle) and less dist inct ion be-

tween independent measurements (top and bot tom). Above,
we represent the coherent wavepacket spread using schemat ic

circles; in general, we indicate the spread precisely using
double-arrows.

Note that the dispersion relat ion for the free-part icle

cont inuum is a circle with radius k0 =
p

2m E
~

, which
doesn’t depend on the orientat ion of k0. The second
term in Eq. 17 is thus proport ional to the second term
in Eq. 11 for k0 projected along the i t h dimension. The
similarity in form between Eq. 17 and Eq. 11 allows us
to relate the flux expectat ion value from Eqs. 12 and 13
to coherent state project ions as

lim
σk0 ! 0

D
 ĵ r 0 ,σ,i  

E
=

~k0

4mσ2
[|h | r 0, k0ei , σi |

2

− |h | r 0, − k0ei , σi |
2
], (18)

whereei is theunit vector along spatial dimension i . The
tradit ional flux vector is approximated by taking mea-
surements along each orthogonal direct ion by rotat ing
ei .

By the well-known uncertainty relat ion

∆ x /
1

∆ k
/ σ, (19)

takingσ ! 0 results in coherent statemeasurementswith
infinite uncertainty in k-space, and zero uncertainty in
real space. This is the limit where the tradit ional flux
operates.

C. D efini t ion of t he H usim i Pr oject ion

Thepropert ies of coherent states make them a suitable
basis for expanding theflux operator to a measurabledef-
init ion, which we call the Husimi funct ion. It is defined

as a measurement of a wavefunct ion  (r ) by a coherent
state, or “test wavepacket”, writ ten as

Hu (r 0, k0, σ;  (r )) = |h | r 0, k0, σi |
2

. (20)

Keeping r 0 fixed, k0 can be rotated to produce a k-
profile, which describes the distribut ion of part icle-like
trajectories that intersect at that point. Weight ing each
of these measurements by the wavevector produces a
Husimi vector; plott ing all Husimi vectors at a point pro-
duces the full Husimi project ion. These project ions are
the sunbursts in Fig. 2, which shows Husimi project ions
for the wavefunct ions

 A (r ) = ei k 1 ·r

 B (r ) = cos(k1 · r ) , (21)

where k1 points towards the upper-right. We show the
wavevectors that generate each state in the white arrow
overlay.

Both wavefunct ions are pure momentum states which
are not spat ially localized, and const itute the building
blocksfor thewavefunct ionsaddressed in thispaper. The
plane wave  A is relevant to magnetic field states dis-
cussed in Sect ion I I I B. The cosine wave  B corresponds
to t ime-reversal symmetric wavefunct ions discussed in
Sect ions I I I A and II I C. Both  A and  B are impor-
tant for scattering wavefunct ions presented in Sect ion IV
which exhibit a mixture of both propert ies.

In systemsexhibit ing t imereversal symmetry, for every
trajectory with momentum k there is another with − k.
Thus, at every point in spacethestat ionary stateexhibits
zero flux. Theequal part icipat ion of counter-propagat ing
flux is absent in  A and evident in  B as a reflected
sunburst.

Fig. 2 also shows that as the spread of the coherent
measurement state decreases, the uncertainty in k-space
increases. This causes the Husimi project ion to become
more uniform: dist inct arrows aligning with the gener-
at ing wavevector turn into lobes and finally full circular
sunbursts. However, even in the limit of large momen-
tum uncertainty, which correlates to the flux operator,
there is st ill residual information indicated by the offset
of the center of the sunburst from the terminat ion of its
rays.

This informat ion can be retrieved by summing all of
the Husimi vectors. When all possible wavevectors at a
part icular point in real space are included in the sum, we
obtain the vector-valued Husimi flux

Hu (r 0, σ;  (r )) =

ˆ

k0 |h | r 0, k0, σi |
2

ddk0. (22)

In Appendix D, we show that asσ ! 0, the contribut ing
points in the integral over k-space to Hu (r 0, σ;  (r )) re-
duce to just the orthogonal direct ions. We can write this
relat ion as

lim
σk0 ! 0

Hu (r 0, σ;  (r )) /

dX

i = 1

ei [|h | r 0, k0ei , σi |
2
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of these measurements by the wavevector produces a
Husimi vector; plott ing all Husimi vectors at a point pro-
duces the full Husimi project ion. These project ions are
the sunbursts in Fig. 2, which shows Husimi project ions
for the wavefunct ions

 A (r ) = ei k 1 ·r

 B (r ) = cos(k1 · r ) , (21)

where k1 points towards the upper-right. We show the
wavevectors that generate each state in the white arrow
overlay.

Both wavefunct ions are pure momentum states which
are not spat ially localized, and const itute the building
blocksfor thewavefunct ionsaddressed in thispaper. The
plane wave  A is relevant to magnetic field states dis-
cussed in Sect ion I I I B. The cosine wave  B corresponds
to t ime-reversal symmetric wavefunct ions discussed in
Sect ions I I I A and II I C. Both  A and  B are impor-
tant for scattering wavefunct ions presented in Sect ion IV
which exhibit a mixture of both propert ies.

In systemsexhibit ing t imereversal symmetry, for every
trajectory with momentum k there is another with − k.
Thus, at every point in spacethestat ionary stateexhibits
zero flux. Theequal part icipat ion of counter-propagat ing
flux is absent in  A and evident in  B as a reflected
sunburst.

Fig. 2 also shows that as the spread of the coherent
measurement state decreases, the uncertainty in k-space
increases. This causes the Husimi project ion to become
more uniform: dist inct arrows aligning with the gener-
at ing wavevector turn into lobes and finally full circular
sunbursts. However, even in the limit of large momen-
tum uncertainty, which correlates to the flux operator,
there is st ill residual information indicated by the offset
of the center of the sunburst from the terminat ion of its
rays.

This informat ion can be retrieved by summing all of
the Husimi vectors. When all possible wavevectors at a
part icular point in real space are included in the sum, we
obtain the vector-valued Husimi flux

Hu (r 0, σ;  (r )) =

ˆ
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2
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In Appendix D, we show that asσ ! 0, the contribut ing
points in the integral over k-space to Hu (r 0, σ;  (r )) re-
duce to just the orthogonal direct ions. We can write this
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complex plane wave ( A ) and the cosine wave ( B ) defined
in Eq. 21. The uncertainty for each project ion corresponds

to ∆ k/ k = 2%(a), 10%(b), 50%(c), 250%(d), corresponding to
smaller wavepacket spreads (middle) and less dist inct ion be-

tween independent measurements (top and bot tom). Above,
we represent the coherent wavepacket spread using schemat ic
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double-arrows.
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Keeping r 0 fixed, k0 can be rotated to produce a k-
profile, which describes the distribut ion of part icle-like
trajectories that intersect at that point. Weight ing each
of these measurements by the wavevector produces a
Husimi vector; plott ing all Husimi vectors at a point pro-
duces the full Husimi project ion. These project ions are
the sunbursts in Fig. 2, which shows Husimi project ions
for the wavefunct ions

 A (r ) = ei k 1 ·r

 B (r ) = cos(k1 · r ) , (21)

where k1 points towards the upper-right. We show the
wavevectors that generate each state in the white arrow
overlay.

Both wavefunct ions are pure momentum states which
are not spat ially localized, and const itute the building
blocksfor thewavefunct ionsaddressed in thispaper. The
plane wave  A is relevant to magnetic field states dis-
cussed in Sect ion I I I B. The cosine wave  B corresponds
to t ime-reversal symmetric wavefunct ions discussed in
Sect ions I I I A and II I C. Both  A and  B are impor-
tant for scattering wavefunct ions presented in Sect ion IV
which exhibit a mixture of both propert ies.

In systemsexhibit ing t imereversal symmetry, for every
trajectory with momentum k there is another with − k.
Thus, at every point in spacethestat ionary stateexhibits
zero flux. Theequal part icipat ion of counter-propagat ing
flux is absent in  A and evident in  B as a reflected
sunburst.

Fig. 2 also shows that as the spread of the coherent
measurement state decreases, the uncertainty in k-space
increases. This causes the Husimi project ion to become
more uniform: dist inct arrows aligning with the gener-
at ing wavevector turn into lobes and finally full circular
sunbursts. However, even in the limit of large momen-
tum uncertainty, which correlates to the flux operator,
there is st ill residual information indicated by the offset
of the center of the sunburst from the terminat ion of its
rays.

This informat ion can be retrieved by summing all of
the Husimi vectors. When all possible wavevectors at a
part icular point in real space are included in the sum, we
obtain the vector-valued Husimi flux
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space, are shown at left for two wavefunct ions at right : the

complex plane wave ( A ) and the cosine wave ( B ) defined
in Eq. 21. The uncertainty for each project ion corresponds

to ∆ k/ k = 2%(a), 10%(b), 50%(c), 250%(d), corresponding to
smaller wavepacket spreads (middle) and less dist inct ion be-

tween independent measurements (top and bot tom). Above,
we represent the coherent wavepacket spread using schemat ic

circles; in general, we indicate the spread precisely using
double-arrows.

Note that the dispersion relat ion for the free-part icle
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, which
doesn’t depend on the orientat ion of k0. The second
term in Eq. 17 is thus proport ional to the second term
in Eq. 11 for k0 projected along the i t h dimension. The
similarity in form between Eq. 17 and Eq. 11 allows us
to relate the flux expectat ion value from Eqs. 12 and 13
to coherent state project ions as
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 ĵ r 0 ,σ,i  

E
=

~k0

4mσ2
[|h | r 0, k0ei , σi |

2

− |h | r 0, − k0ei , σi |
2
], (18)

whereei is theunit vector along spatial dimension i . The
tradit ional flux vector is approximated by taking mea-
surements along each orthogonal direct ion by rotat ing
ei .

By the well-known uncertainty relat ion
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takingσ ! 0 results in coherent statemeasurementswith
infinite uncertainty in k-space, and zero uncertainty in
real space. This is the limit where the tradit ional flux
operates.
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basis for expanding theflux operator to a measurabledef-
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as a measurement of a wavefunct ion  (r ) by a coherent
state, or “test wavepacket”, writ ten as
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Keeping r 0 fixed, k0 can be rotated to produce a k-
profile, which describes the distribut ion of part icle-like
trajectories that intersect at that point. Weight ing each
of these measurements by the wavevector produces a
Husimi vector; plott ing all Husimi vectors at a point pro-
duces the full Husimi project ion. These project ions are
the sunbursts in Fig. 2, which shows Husimi project ions
for the wavefunct ions

 A (r ) = ei k 1 ·r

 B (r ) = cos(k1 · r ) , (21)

where k1 points towards the upper-right. We show the
wavevectors that generate each state in the white arrow
overlay.

Both wavefunct ions are pure momentum states which
are not spat ially localized, and const itute the building
blocksfor thewavefunct ionsaddressed in thispaper. The
plane wave  A is relevant to magnetic field states dis-
cussed in Sect ion I I I B. The cosine wave  B corresponds
to t ime-reversal symmetric wavefunct ions discussed in
Sect ions I I I A and II I C. Both  A and  B are impor-
tant for scattering wavefunct ions presented in Sect ion IV
which exhibit a mixture of both propert ies.

In systemsexhibit ing t imereversal symmetry, for every
trajectory with momentum k there is another with − k.
Thus, at every point in spacethestat ionary stateexhibits
zero flux. Theequal part icipat ion of counter-propagat ing
flux is absent in  A and evident in  B as a reflected
sunburst.

Fig. 2 also shows that as the spread of the coherent
measurement state decreases, the uncertainty in k-space
increases. This causes the Husimi project ion to become
more uniform: dist inct arrows aligning with the gener-
at ing wavevector turn into lobes and finally full circular
sunbursts. However, even in the limit of large momen-
tum uncertainty, which correlates to the flux operator,
there is st ill residual information indicated by the offset
of the center of the sunburst from the terminat ion of its
rays.

This informat ion can be retrieved by summing all of
the Husimi vectors. When all possible wavevectors at a
part icular point in real space are included in the sum, we
obtain the vector-valued Husimi flux
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duce to just the orthogonal direct ions. We can write this
relat ion as

lim
σk0 ! 0

Hu (r 0, σ;  (r )) /

dX

i = 1

ei [|h | r 0, k0ei , σi |
2



Definition of the Husimi Function 

3

(a) (b) (c) (d)

Figure 2: Husimi vectors for 32 equally-space points in k-
space, are shown at left for two wavefunct ions at right : the

complex plane wave ( A ) and the cosine wave ( B ) defined
in Eq. 21. The uncertainty for each project ion corresponds

to ∆ k/ k = 2%(a), 10%(b), 50%(c), 250%(d), corresponding to
smaller wavepacket spreads (middle) and less dist inct ion be-

tween independent measurements (top and bot tom). Above,
we represent the coherent wavepacket spread using schemat ic

circles; in general, we indicate the spread precisely using
double-arrows.

Note that the dispersion relat ion for the free-part icle

cont inuum is a circle with radius k0 =
p

2m E
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, which
doesn’t depend on the orientat ion of k0. The second
term in Eq. 17 is thus proport ional to the second term
in Eq. 11 for k0 projected along the i t h dimension. The
similarity in form between Eq. 17 and Eq. 11 allows us
to relate the flux expectat ion value from Eqs. 12 and 13
to coherent state project ions as
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whereei is theunit vector along spatial dimension i . The
tradit ional flux vector is approximated by taking mea-
surements along each orthogonal direct ion by rotat ing
ei .

By the well-known uncertainty relat ion

∆ x /
1
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takingσ ! 0 results in coherent statemeasurementswith
infinite uncertainty in k-space, and zero uncertainty in
real space. This is the limit where the tradit ional flux
operates.

C. D efini t ion of t he H usim i Pr oject ion

Thepropert ies of coherent states make them a suitable
basis for expanding theflux operator to a measurabledef-
init ion, which we call the Husimi funct ion. It is defined

as a measurement of a wavefunct ion  (r ) by a coherent
state, or “test wavepacket”, writ ten as

Hu (r 0, k0, σ;  (r )) = |h | r 0, k0, σi |
2

. (20)

Keeping r 0 fixed, k0 can be rotated to produce a k-
profile, which describes the distribut ion of part icle-like
trajectories that intersect at that point. Weight ing each
of these measurements by the wavevector produces a
Husimi vector; plott ing all Husimi vectors at a point pro-
duces the full Husimi project ion. These project ions are
the sunbursts in Fig. 2, which shows Husimi project ions
for the wavefunct ions

 A (r ) = ei k 1 ·r

 B (r ) = cos(k1 · r ) , (21)

where k1 points towards the upper-right. We show the
wavevectors that generate each state in the white arrow
overlay.

Both wavefunct ions are pure momentum states which
are not spat ially localized, and const itute the building
blocksfor thewavefunct ionsaddressed in thispaper. The
plane wave  A is relevant to magnetic field states dis-
cussed in Sect ion I I I B. The cosine wave  B corresponds
to t ime-reversal symmetric wavefunct ions discussed in
Sect ions I I I A and II I C. Both  A and  B are impor-
tant for scattering wavefunct ions presented in Sect ion IV
which exhibit a mixture of both propert ies.

In systemsexhibit ing t imereversal symmetry, for every
trajectory with momentum k there is another with − k.
Thus, at every point in spacethestat ionary stateexhibits
zero flux. Theequal part icipat ion of counter-propagat ing
flux is absent in  A and evident in  B as a reflected
sunburst.

Fig. 2 also shows that as the spread of the coherent
measurement state decreases, the uncertainty in k-space
increases. This causes the Husimi project ion to become
more uniform: dist inct arrows aligning with the gener-
at ing wavevector turn into lobes and finally full circular
sunbursts. However, even in the limit of large momen-
tum uncertainty, which correlates to the flux operator,
there is st ill residual information indicated by the offset
of the center of the sunburst from the terminat ion of its
rays.

This informat ion can be retrieved by summing all of
the Husimi vectors. When all possible wavevectors at a
part icular point in real space are included in the sum, we
obtain the vector-valued Husimi flux

Hu (r 0, σ;  (r )) =
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In Appendix D, we show that asσ ! 0, the contribut ing
points in the integral over k-space to Hu (r 0, σ;  (r )) re-
duce to just the orthogonal direct ions. We can write this
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Figure 2: Husimi vectors for 32 equally-space points in k-
space, are shown at left for two wavefunct ions at right : the

complex plane wave ( A ) and the cosine wave ( B ) defined
in Eq. 21. The uncertainty for each project ion corresponds

to ∆ k/ k = 2%(a), 10%(b), 50%(c), 250%(d), corresponding to
smaller wavepacket spreads (middle) and less dist inct ion be-

tween independent measurements (top and bot tom). Above,
we represent the coherent wavepacket spread using schemat ic

circles; in general, we indicate the spread precisely using
double-arrows.

Note that the dispersion relat ion for the free-part icle

cont inuum is a circle with radius k0 =
p

2m E
~

, which
doesn’t depend on the orientat ion of k0. The second
term in Eq. 17 is thus proport ional to the second term
in Eq. 11 for k0 projected along the i t h dimension. The
similarity in form between Eq. 17 and Eq. 11 allows us
to relate the flux expectat ion value from Eqs. 12 and 13
to coherent state project ions as
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whereei is theunit vector along spatial dimension i . The
tradit ional flux vector is approximated by taking mea-
surements along each orthogonal direct ion by rotat ing
ei .

By the well-known uncertainty relat ion

∆ x /
1
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takingσ ! 0 results in coherent statemeasurementswith
infinite uncertainty in k-space, and zero uncertainty in
real space. This is the limit where the tradit ional flux
operates.

C. D efini t ion of t he H usim i Pr oject ion

Thepropert ies of coherent states make them a suitable
basis for expanding theflux operator to a measurabledef-
init ion, which we call the Husimi funct ion. It is defined

as a measurement of a wavefunct ion  (r ) by a coherent
state, or “test wavepacket”, writ ten as

Hu (r 0, k0, σ;  (r )) = |h | r 0, k0, σi |
2

. (20)

Keeping r 0 fixed, k0 can be rotated to produce a k-
profile, which describes the distribut ion of part icle-like
trajectories that intersect at that point. Weight ing each
of these measurements by the wavevector produces a
Husimi vector; plott ing all Husimi vectors at a point pro-
duces the full Husimi project ion. These project ions are
the sunbursts in Fig. 2, which shows Husimi project ions
for the wavefunct ions

 A (r ) = ei k 1 ·r

 B (r ) = cos(k1 · r ) , (21)

where k1 points towards the upper-right. We show the
wavevectors that generate each state in the white arrow
overlay.

Both wavefunct ions are pure momentum states which
are not spat ially localized, and const itute the building
blocksfor thewavefunct ionsaddressed in thispaper. The
plane wave  A is relevant to magnetic field states dis-
cussed in Sect ion I I I B. The cosine wave  B corresponds
to t ime-reversal symmetric wavefunct ions discussed in
Sect ions I I I A and II I C. Both  A and  B are impor-
tant for scattering wavefunct ions presented in Sect ion IV
which exhibit a mixture of both propert ies.

In systemsexhibit ing t imereversal symmetry, for every
trajectory with momentum k there is another with − k.
Thus, at every point in spacethestat ionary stateexhibits
zero flux. Theequal part icipat ion of counter-propagat ing
flux is absent in  A and evident in  B as a reflected
sunburst.

Fig. 2 also shows that as the spread of the coherent
measurement state decreases, the uncertainty in k-space
increases. This causes the Husimi project ion to become
more uniform: dist inct arrows aligning with the gener-
at ing wavevector turn into lobes and finally full circular
sunbursts. However, even in the limit of large momen-
tum uncertainty, which correlates to the flux operator,
there is st ill residual information indicated by the offset
of the center of the sunburst from the terminat ion of its
rays.

This informat ion can be retrieved by summing all of
the Husimi vectors. When all possible wavevectors at a
part icular point in real space are included in the sum, we
obtain the vector-valued Husimi flux

Hu (r 0, σ;  (r )) =
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k0 |h | r 0, k0, σi |
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ddk0. (22)

In Appendix D, we show that asσ ! 0, the contribut ing
points in the integral over k-space to Hu (r 0, σ;  (r )) re-
duce to just the orthogonal direct ions. We can write this
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Figure 2: Husimi vectors for 32 equally-space points in k-
space, are shown at left for two wavefunct ions at right : the

complex plane wave ( A ) and the cosine wave ( B ) defined
in Eq. 21. The uncertainty for each project ion corresponds

to ∆ k/ k = 2%(a), 10%(b), 50%(c), 250%(d), corresponding to
smaller wavepacket spreads (middle) and less dist inct ion be-

tween independent measurements (top and bot tom). Above,
we represent the coherent wavepacket spread using schemat ic

circles; in general, we indicate the spread precisely using
double-arrows.

Note that the dispersion relat ion for the free-part icle

cont inuum is a circle with radius k0 =
p
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, which
doesn’t depend on the orientat ion of k0. The second
term in Eq. 17 is thus proport ional to the second term
in Eq. 11 for k0 projected along the i t h dimension. The
similarity in form between Eq. 17 and Eq. 11 allows us
to relate the flux expectat ion value from Eqs. 12 and 13
to coherent state project ions as
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whereei is theunit vector along spatial dimension i . The
tradit ional flux vector is approximated by taking mea-
surements along each orthogonal direct ion by rotat ing
ei .

By the well-known uncertainty relat ion
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takingσ ! 0 results in coherent statemeasurementswith
infinite uncertainty in k-space, and zero uncertainty in
real space. This is the limit where the tradit ional flux
operates.
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Thepropert ies of coherent states make them a suitable
basis for expanding theflux operator to a measurabledef-
init ion, which we call the Husimi funct ion. It is defined

as a measurement of a wavefunct ion  (r ) by a coherent
state, or “test wavepacket”, writ ten as
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Keeping r 0 fixed, k0 can be rotated to produce a k-
profile, which describes the distribut ion of part icle-like
trajectories that intersect at that point. Weight ing each
of these measurements by the wavevector produces a
Husimi vector; plott ing all Husimi vectors at a point pro-
duces the full Husimi project ion. These project ions are
the sunbursts in Fig. 2, which shows Husimi project ions
for the wavefunct ions
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where k1 points towards the upper-right. We show the
wavevectors that generate each state in the white arrow
overlay.

Both wavefunct ions are pure momentum states which
are not spat ially localized, and const itute the building
blocksfor thewavefunct ionsaddressed in thispaper. The
plane wave  A is relevant to magnetic field states dis-
cussed in Sect ion I I I B. The cosine wave  B corresponds
to t ime-reversal symmetric wavefunct ions discussed in
Sect ions I I I A and II I C. Both  A and  B are impor-
tant for scattering wavefunct ions presented in Sect ion IV
which exhibit a mixture of both propert ies.

In systemsexhibit ing t imereversal symmetry, for every
trajectory with momentum k there is another with − k.
Thus, at every point in spacethestat ionary stateexhibits
zero flux. Theequal part icipat ion of counter-propagat ing
flux is absent in  A and evident in  B as a reflected
sunburst.

Fig. 2 also shows that as the spread of the coherent
measurement state decreases, the uncertainty in k-space
increases. This causes the Husimi project ion to become
more uniform: dist inct arrows aligning with the gener-
at ing wavevector turn into lobes and finally full circular
sunbursts. However, even in the limit of large momen-
tum uncertainty, which correlates to the flux operator,
there is st ill residual information indicated by the offset
of the center of the sunburst from the terminat ion of its
rays.

This informat ion can be retrieved by summing all of
the Husimi vectors. When all possible wavevectors at a
part icular point in real space are included in the sum, we
obtain the vector-valued Husimi flux
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Figure 2: Husimi vectors for 32 equally-space points in k-
space, are shown at left for two wavefunct ions at right : the

complex plane wave ( A ) and the cosine wave ( B ) defined
in Eq. 21. The uncertainty for each project ion corresponds

to ∆ k/ k = 2%(a), 10%(b), 50%(c), 250%(d), corresponding to
smaller wavepacket spreads (middle) and less dist inct ion be-

tween independent measurements (top and bot tom). Above,
we represent the coherent wavepacket spread using schemat ic

circles; in general, we indicate the spread precisely using
double-arrows.

Note that the dispersion relat ion for the free-part icle
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, which
doesn’t depend on the orientat ion of k0. The second
term in Eq. 17 is thus proport ional to the second term
in Eq. 11 for k0 projected along the i t h dimension. The
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to relate the flux expectat ion value from Eqs. 12 and 13
to coherent state project ions as
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whereei is theunit vector along spatial dimension i . The
tradit ional flux vector is approximated by taking mea-
surements along each orthogonal direct ion by rotat ing
ei .

By the well-known uncertainty relat ion
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takingσ ! 0 results in coherent statemeasurementswith
infinite uncertainty in k-space, and zero uncertainty in
real space. This is the limit where the tradit ional flux
operates.
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Thepropert ies of coherent states make them a suitable
basis for expanding theflux operator to a measurabledef-
init ion, which we call the Husimi funct ion. It is defined

as a measurement of a wavefunct ion  (r ) by a coherent
state, or “test wavepacket”, writ ten as

Hu (r 0, k0, σ;  (r )) = |h | r 0, k0, σi |
2

. (20)

Keeping r 0 fixed, k0 can be rotated to produce a k-
profile, which describes the distribut ion of part icle-like
trajectories that intersect at that point. Weight ing each
of these measurements by the wavevector produces a
Husimi vector; plott ing all Husimi vectors at a point pro-
duces the full Husimi project ion. These project ions are
the sunbursts in Fig. 2, which shows Husimi project ions
for the wavefunct ions

 A (r ) = ei k 1 ·r

 B (r ) = cos(k1 · r ) , (21)

where k1 points towards the upper-right. We show the
wavevectors that generate each state in the white arrow
overlay.

Both wavefunct ions are pure momentum states which
are not spat ially localized, and const itute the building
blocksfor thewavefunct ionsaddressed in thispaper. The
plane wave  A is relevant to magnetic field states dis-
cussed in Sect ion I I I B. The cosine wave  B corresponds
to t ime-reversal symmetric wavefunct ions discussed in
Sect ions I I I A and II I C. Both  A and  B are impor-
tant for scattering wavefunct ions presented in Sect ion IV
which exhibit a mixture of both propert ies.

In systemsexhibit ing t imereversal symmetry, for every
trajectory with momentum k there is another with − k.
Thus, at every point in spacethestat ionary stateexhibits
zero flux. Theequal part icipat ion of counter-propagat ing
flux is absent in  A and evident in  B as a reflected
sunburst.

Fig. 2 also shows that as the spread of the coherent
measurement state decreases, the uncertainty in k-space
increases. This causes the Husimi project ion to become
more uniform: dist inct arrows aligning with the gener-
at ing wavevector turn into lobes and finally full circular
sunbursts. However, even in the limit of large momen-
tum uncertainty, which correlates to the flux operator,
there is st ill residual information indicated by the offset
of the center of the sunburst from the terminat ion of its
rays.

This informat ion can be retrieved by summing all of
the Husimi vectors. When all possible wavevectors at a
part icular point in real space are included in the sum, we
obtain the vector-valued Husimi flux

Hu (r 0, σ;  (r )) =

ˆ

k0 |h | r 0, k0, σi |
2

ddk0. (22)

In Appendix D, we show that asσ ! 0, the contribut ing
points in the integral over k-space to Hu (r 0, σ;  (r )) re-
duce to just the orthogonal direct ions. We can write this
relat ion as

lim
σk0 ! 0

Hu (r 0, σ;  (r )) /

dX

i = 1

ei [|h | r 0, k0ei , σi |
2
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Figure 4.2.3: A coherent state within the system (lower-left) bounces off the sys-

tem boundary (middle) and reflects into a coherent state with a different wavevector

(upper-right). This can also be imagined with the boundary replaced by an image

wavepacket (lower-right). When the original wavepacket bounces off the boundary,

instead the image wavepacket simply passes through it . In this way, the incoming

wavepacket scatters into an outgoing wavepacket, which was originally the image

wavepacket.

4.3.1 Eigenst at es of t he Circular Syst em

The circular well is an ideal system for demonstrat ing the Husimi map since their

classical dynamics are simple and can be analyt ically determined.

The Schrodinger equat ion can be writ ten in radial form as

d2R(r )

dr 2
+

1

r

dR(r )

dr
+

✓

k2 −
m2

r 2

◆

R(r ) = 0. (4.3.1)

Solut ions to this equation aresimultaneous eigenstates of energy and angular momen-

tum, and thus possess the good quantum numbers n (number of nodes in the radial

direct ion) and m (number of angular nodes). Fig. 4.3.1a-c shows three such states,

the first with n = 0, the second with n m, and the third with n ⇡ m. The Husimi
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Figure 2: Husimi vectors for 32 equally-space points in k-
space, are shown at left for two wavefunct ions at right : the

complex plane wave ( A ) and the cosine wave ( B ) defined
in Eq.17. The uncertainty for each project ion corresponds

to ∆ k/ k = 2%(a), 10%(b), 50%(c), 250%(d), corresponding to
smaller wavepacket spreads (middle) and less dist inct ion be-
tween independent measurements (top and bot tom).

Keeping ~r0 fixed, ~k0 can be varied to produce a ~k-profile.
This profile describes the dist ribut ion of part icle-like t ra-
jectories that intersect at that point . Weight ing each
of these measurements by the wavevector produces a
Husimi vector, and plot t ing all Husimi vectors at a point
produces the full Husimi project ion which resembles the
sunbursts shown in Fig. 2, which shows Husimi projec-
t ions for the wavefunct ions

 A (~r ) = ei ~k1 ·~r

 B (~r ) = cos
⇣
~k1 · ~r

⌘
(17)

where~k1 points towards the upper-right and ~k2 points to
the upper-left .

Both wavefunct ions are pure momentum states which
are not spat ially localized, and const itute the building
blocks for thewavefunct ionsaddressed in thispaper. The
plane wave  A is relevant to magnet ic field states in Sec-
t ion I I I B. The cosine wave  B corresponds to t ime-
reversal symmetric wavefunct ions, such as closed systems
without a magnet ic field discussed in Sect ions I I I A and
I I I C, where every ray is accompanied by its exact op-
posite. Both  A and  B are important for scat tering
wavefunct ions in Sect ion I I I D which exhibit a mixture
of both propert ies. The equal part icipat ion of counter-
propagat ing flux is absent in  A and evident in  B as a
reflected sunburst .

Fig. 2 also shows that as the spread of the coherent
measurement state decreases, the uncertainty in k-space
increases. This causes the Husimi sunburst to become
more uniform. This t ransit ion can be seen visually as
dist inct arrows aligning with the generat ing wavevector
turn into lobes and finally full circular sunbursts. How-
ever, it is also clear that even in the ext reme limit of large
momentum uncertainty, which correlates to the flux op-

(a)

(b) (c) (d) (e)

Figure 3: Husimi vectors for 32 equally-space points in k-

space are shown (a) for the double cosine waves ( C ) from
Eq.19. The uncertainty for each project ion corresponds to

∆ k/ k = 30%. As the mult i-modal algorithm (Algorithm 1)
loops through each iterat ion (b-e), a t rajectory ismatched and

then subt racted from the full Husimi sunburst , unt il all major
t rajectories are approximated by their appropriate values.

erator, there is st ill residual informat ion indicated by the
offset of the center of the sunburst from the terminat ion
of its rays.

This informat ion can be ret rieved by summing all of
the Husimi vectors. When all possible wavevectors at a
part icular point in real space are included in the sum, we

obtain the vector-valued Husimi funct ion ~Hu (~r 0, σ;  (~r ))

1

σ
p

2⇡

ˆ
~k0

ˆ

 (~r ) e− (~r − ~r 0 ) 2 / 4σ2 + i ~k0 ·~r d~r

2

d~k0 (18)

As σ ! 0, this equates to the flux operator in Eq.14.

Wesample theHusimi project ion along a grid in spat ial
coordinates, since it is easier to plot , st raight forward to
interpret , and allows for comput ing metrics like angular
deflect ion (seeSect ion I I E). However, other schemesmay
be preferred. In Fig. 5, for example, we sample along
classical t rajectories to emphasize the quantum-classical
correspondence.

This paper addresses two-dimensional systems, but
the Husimi project ion it is equally applicable for higher-
dimensional systems. To produce thefigures in our paper
from a three-dimensional system, it is possible to either
to take two-dimensional slices through the wavefunct ion
and calculate the Husimi project ion, or to project the
full three-dimensional Husimi project ion onto two dimen-
sions.

D . M ul t i -M odal A nalysis

The Husimi sunbursts in Fig. 2 reveal that even a sin-
gle plane wave produces many non-t rivial Husimi vec-
tors because of the finite spread of the wavepacket . Can
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Figure 3: Husimi vectors for 32 equally-space points in k-

space are shown (a) for the double cosine waves ( C ) from
Eq. 24. The uncertainty for each project ion corresponds to

∆ k/ k = 30%. As the mult i-modal algorithm (Algorithm 1)
loops through each iterat ion (b-e), a t rajectory is matched

and then subt racted from the full Husimi project ion, unt il
all major t rajectories are approximated by their appropriate

values.

− |h | r 0, − k0ei , σi |
2
], (23)

where ei is the unit vector along the i t h orthogonal di-
rect ion, and we sum over d dimensions. By Eq. 18, both
sides of Eq. 23 are proport ional to the tradit ional flux
measured at point r 0.

To produce theHusimi map, wesampleHusimi projec-
t ions along a grid in spat ial coordinates, since it is easier
to plot, st raight forward to interpret, and allows for com-
put ing metrics like angular deflect ion (see Sect ion I I E).
However, other schemes may be preferred. In Fig. 5, for
example, wesamplealong classical t rajectories to empha-
size the quantum-classical correspondence. While this
paper addresses two-dimensional systems, Husimi projec-
t ions are equally applicable for higher-dimensional sys-
tems.

D . M ult i -M odal A nalysis

The Husimi project ions in Fig. 2 reveal that even a
single plane wave produces a range of Husimi vectors be-
cause of thefinite spread of the wavepacket . Can dist inct
trajectories intersect ing at a point be dist inguished un-
ambiguously? If the dominant plane waves at a point are
sufficient ly separated in k-space that the momentum un-
certainty of the coherent state can resolve between them,
we can retrieve them numerically using the Mult i-Modal
Algorithm (Algorithm 1). This analyt ical tool can be es-
pecially useful for t ime-reversal symmetric systemswhere
both the tradit ional flux and the Husimi total flux are
ident ically zero.

Figs. 3 demonstrates the algorithm on the pure mo-

A lgor it hm 1 Mult i-Modal Analysis

1. A set of Husimi templates on N wavevectors { k j } is

created for the wavefunct ions  = ei k t est
i ·r generated by

the M wavevectors k t est
i

 
. Both sets of wavevectors

lie along the dispersion contour. Each template can be

stored as a vector of values u i of length M where each
member corresponds to the Husimi funct ion along the

wavevector k j .

2. Writ ing the Husimi project ion as the vector v , a metric

is computed di = v · u i for each Husimi template.

3. The maximum of the set { di } is determined, and both
the wavevector k t est

i and the dot product di are stored.

4. Thecont ribut ion of the trajectory with wavevector k t est
i

is determined by the re-weighted vector u i
d i

u i ·u i
.

5. The re-weighted template vector is subt racted form the

project ion, that is, v ! v − u i
d i

u i ·u i
.

6. All elements of v which are now negat iveare set to zero.

7. Steps 1-6 are repeated unt il the metric di dips below a

threshold.

8. The set of vectors di k
t est
i

 
are used to approximate

the Husimi project ion

mentum state

 C (r ) = ↵ cos(k1 · r ) + β cos(k2 · r ) , (24)

where k1 points towards the upper-right and k2 points
towards the upper-left . We set ↵ = 1 and β = 0.8. In
Fig. 3a, the Husimi project ion is shown with a sizable
uncertainty of ∆ k/ k = 30%. Parts b-e iterate through
the for loop in steps 1-6 of the Mult i-Modal Algorithm.
At each iterat ion, the most dominant plane wave in the
sunburst is modeled and then subtracted from the pro-
ject ion. This is repeated unt il all major planewaves have
been approximated.

If thedominant t rajectories intersect ing at a point have
sufficient ly divergent momenta, not only does the algo-
rithm do an excellent job of modeling them, it can even
compute how many there are. In general, we stop the
loop in Step 7 after a certain number of iterat ions to
make clearer figures.

On the other hand, when there are a number of t rajec-
tories of equal weight whosemomenta cannot be resolved
by the coherent state, Algorithm 1 can produce unex-
pected results. An example of unresolved trajectories is
seen in the points sampled along the perimeter of Fig. 4a
and in the central regions of Figs. 4b-d and 5. In these
cases, the Mult i-Modal Algorithm approximates overlap-
ping trajectories by first choosing their average, and then
contribut ing addit ional trajectories on either side.

Even when the tradit ional flux is non-trivial, as in
Fig. 7 and magnified in Fig. 8a, it can only produce an
average of the trajectories at a point . For this reason
the mult i-modal analysis improves upon the flux opera-
tor even when the flux is non-zero, since the paths indi-
cated by theflux map can bemisleading. For example, in
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Figure 2: Husimi vectors for 32 equally-space points in k-
space, are shown at left for two wavefunct ions at right : the

complex plane wave ( A ) and the cosine wave ( B ) defined
in Eq.17. The uncertainty for each project ion corresponds

to ∆ k/ k = 2%(a), 10%(b), 50%(c), 250%(d), corresponding to
smaller wavepacket spreads (middle) and less dist inct ion be-
tween independent measurements (top and bot tom).

Keeping ~r0 fixed, ~k0 can be varied to produce a ~k-profile.
This profile describes the dist ribut ion of part icle-like t ra-
jectories that intersect at that point . Weight ing each
of these measurements by the wavevector produces a
Husimi vector, and plot t ing all Husimi vectors at a point
produces the full Husimi project ion which resembles the
sunbursts shown in Fig. 2, which shows Husimi projec-
t ions for the wavefunct ions

 A (~r ) = ei ~k1 ·~r

 B (~r ) = cos
⇣
~k1 · ~r

⌘
(17)

where~k1 points towards the upper-right and ~k2 points to
the upper-left .

Both wavefunct ions are pure momentum states which
are not spat ially localized, and const itute the building
blocks for thewavefunct ionsaddressed in thispaper. The
plane wave  A is relevant to magnet ic field states in Sec-
t ion I I I B. The cosine wave  B corresponds to t ime-
reversal symmetric wavefunct ions, such as closed systems
without a magnet ic field discussed in Sect ions I I I A and
I I I C, where every ray is accompanied by its exact op-
posite. Both  A and  B are important for scat tering
wavefunct ions in Sect ion I I I D which exhibit a mixture
of both propert ies. The equal part icipat ion of counter-
propagat ing flux is absent in  A and evident in  B as a
reflected sunburst .

Fig. 2 also shows that as the spread of the coherent
measurement state decreases, the uncertainty in k-space
increases. This causes the Husimi sunburst to become
more uniform. This t ransit ion can be seen visually as
dist inct arrows aligning with the generat ing wavevector
turn into lobes and finally full circular sunbursts. How-
ever, it is also clear that even in the ext reme limit of large
momentum uncertainty, which correlates to the flux op-
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Figure 3: Husimi vectors for 32 equally-space points in k-

space are shown (a) for the double cosine waves ( C ) from
Eq.19. The uncertainty for each project ion corresponds to

∆ k/ k = 30%. As the mult i-modal algorithm (Algorithm 1)
loops through each iterat ion (b-e), a t rajectory ismatched and

then subt racted from the full Husimi sunburst , unt il all major
t rajectories are approximated by their appropriate values.

erator, there is st ill residual informat ion indicated by the
offset of the center of the sunburst from the terminat ion
of its rays.

This informat ion can be ret rieved by summing all of
the Husimi vectors. When all possible wavevectors at a
part icular point in real space are included in the sum, we

obtain the vector-valued Husimi funct ion ~Hu (~r 0, σ;  (~r ))
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 (~r ) e− (~r − ~r 0 ) 2 / 4σ2 + i ~k0 ·~r d~r
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d~k0 (18)

As σ ! 0, this equates to the flux operator in Eq.14.

Wesample theHusimi project ion along a grid in spat ial
coordinates, since it is easier to plot , st raight forward to
interpret , and allows for comput ing metrics like angular
deflect ion (seeSect ion I I E). However, other schemesmay
be preferred. In Fig. 5, for example, we sample along
classical t rajectories to emphasize the quantum-classical
correspondence.

This paper addresses two-dimensional systems, but
the Husimi project ion it is equally applicable for higher-
dimensional systems. To produce thefigures in our paper
from a three-dimensional system, it is possible to either
to take two-dimensional slices through the wavefunct ion
and calculate the Husimi project ion, or to project the
full three-dimensional Husimi project ion onto two dimen-
sions.

D . M ul t i -M odal A nalysis

The Husimi sunbursts in Fig. 2 reveal that even a sin-
gle plane wave produces many non-t rivial Husimi vec-
tors because of the finite spread of the wavepacket . Can
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Eq.19. The uncertainty for each project ion corresponds to

∆ k/ k = 30%. As the mult i-modal algorithm (Algorithm 1)
loops through each iterat ion (b-e), a t rajectory ismatched and

then subt racted from the full Husimi sunburst , unt il all major
t rajectories are approximated by their appropriate values.

erator, there is st ill residual informat ion indicated by the
offset of the center of the sunburst from the terminat ion
of its rays.

This informat ion can be ret rieved by summing all of
the Husimi vectors. When all possible wavevectors at a
part icular point in real space are included in the sum, we

obtain the vector-valued Husimi funct ion ~Hu (~r 0, σ;  (~r ))

1

σ
p

2⇡

ˆ
~k0

ˆ

 (~r ) e− (~r − ~r 0 ) 2 / 4σ2 + i ~k0 ·~r d~r

2

d~k0 (18)

As σ ! 0, this equates to the flux operator in Eq.14.
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be preferred. In Fig. 5, for example, we sample along
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This paper addresses two-dimensional systems, but
the Husimi project ion it is equally applicable for higher-
dimensional systems. To produce thefigures in our paper
from a three-dimensional system, it is possible to either
to take two-dimensional slices through the wavefunct ion
and calculate the Husimi project ion, or to project the
full three-dimensional Husimi project ion onto two dimen-
sions.

D . M ul t i -M odal A nalysis

The Husimi sunbursts in Fig. 2 reveal that even a sin-
gle plane wave produces many non-t rivial Husimi vec-
tors because of the finite spread of the wavepacket . Can





Magnetic Fields 



Magnetic Fields 

7

and 5b, which correspond to thewavefunct ions in Figs. 4c
and 4d respect ively.

Each Husimi project ion in Fig. 5b contains an addi-
t ional set of Husimi vectors which don’t align with the
path. These vectors can be understood by considering
that wavefunct ions for the circular well and harmonic
oscillator actually correspond to infinitely many such
paths rotated in space due to the circular symmetry of
these systems, which we indicate in Fig. 5c. The “cross-
hatching” patterns in Fig. 5a-b arise because two rotated
classical paths intersect at any point .

Towards the center of the system, a large number of
paths come into close proximity. Even though an in-
finitesimal point is intersected by only two paths, the
finite spread of the coherent state is sensit ive to other
paths nearby, giving rise to Husimi project ions showing
a large number of trajectories with similar angles. These
points in a wavefunct ion can violate assumpt ions of the
mult i-modal analysis in Sect ion I I D. As a result , the
mult i-modal analysis in Figs. 4c and 4d does not produce
the original paths, but their average and approximations
on both sides of the average.

B . M agnet ic Field

Systems without t ime-reversal symmetry can also be
studied with the Husimi technique as shown below for
systems in the presence of a magnet ic field. To prop-
erly reflect these states, both the momentum operator in
Eq. 1 and the momentum term ik0 ·r 0 in Eq. 23 must be
modified to reflect the canonical t ransformation

p ! p − qA / c, (30)

where the magnet ic potent ial A is defined in App. C.
Results for large magnet ic fields, such as when the

cyclotron radius is smaller than the system size (see
App. C), are presented in Fig. 6. The classical trajecto-
ries for these systems are circular with radii correspond-
ing to the cyclotron radius, which the Husimi map is
perfect ly capable of revealing. In Fig. 7, the full classical
paths corresponding to each state are depicted, and cor-
relate strongly with the Husimi map with the canonical
transformation.

The Husimi project ion can obtain informat ion about
the dynamics of the system that is lost in the conven-
t ional flux analysis. In Fig. 8, magnified views from
the flux operator, mult i-modal analysis, and full Husimi
map corresponding to the red circles in Figs. 6 and 7 are
shown. We model this point in the wavefunct ion accord-
ing to the pure momentum state

 D (r ) = ei k 3 ·r + ei k 4 ·r , (31)

wherek3 and k4 areindicated by thewhitearrows. While
the mult i-modal analysis is able to properly ident ify two
independent trajectories, the flux merely averages them.
The left column of Fig. 7, which shows the flux map,

(a)

(b)

Figure 6: Husimi map (left ), mult i-modal analysis (middle),
and the wavefunct ion (right ) are shown for two eigenstates of

the circular well with magnet ic field vectors coming out of the
plane. The magnet ic field strength is set so that the cyclot ron

radius is approximately 1/ 2(a) and 1/ 3(b) of the the system
radius. Double-arrows at far right indicate the spread of the

coherent state which is∆ k/ k = 10%. Thesestatescorrespond
to the classical paths discussed in Fig. 7.

(a)

(b)

Figure 7: The flux map, mult i-modal analysis, and classical
paths are shown for the states represented in Fig. 6(a-b). The
tradit ional flux correlates strongly with Husimi flux (Eq. 23)

but fails to show the classical paths suggested by the wave-
funct ion. Red circles correspond to magnified views in Fig. 8.

integrated with a Gaussian kernel corresponding to the
coherent state used to generate the Husimi map, is con-
sequent ly unable to represent the classical paths (right
column). In contrast, the mult i-modal analysis in the
middle column indicates these paths with remarkable fi-
delity.

C. St adium B il l iar d Eigenst at es

The classical dynamics of the circular stadium are in-
tegrable while those of the Bunimovich stadium[18] are
chaot ic. As a result , the stadium has been featured in
many studies of "quantum chaology" [14, 19–25].
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Figure 2: Husimi vectors for 32 equally-space points in k-
space, are shown at left for two wavefunct ions at right : the

complex plane wave ( A ) and the cosine wave ( B ) defined
in Eq. 21. The uncertainty for each project ion corresponds

to ∆ k/ k = 2%(a), 10%(b), 50%(c), 250%(d), corresponding to
smaller wavepacket spreads (middle) and less dist inct ion be-

tween independent measurements (top and bot tom). Above,
we represent the coherent wavepacket spread using schemat ic

circles; in general, we indicate the spread precisely using
double-arrows.

Note that the dispersion relat ion for the free-part icle

cont inuum is a circle with radius k0 =
p

2m E
~

, which
doesn’t depend on the orientat ion of k0. The second
term in Eq. 17 is thus proport ional to the second term
in Eq. 11 for k0 projected along the i t h dimension. The
similarity in form between Eq. 17 and Eq. 11 allows us
to relate the flux expectat ion value from Eqs. 12 and 13
to coherent state project ions as

lim
σk0 ! 0

D
 ĵ r 0 ,σ,i  

E
=

~k0

4mσ2
[|h | r 0, k0ei , σi |

2

− |h | r 0, − k0ei , σi |
2
], (18)

whereei is theunit vector along spatial dimension i . The
tradit ional flux vector is approximated by taking mea-
surements along each orthogonal direct ion by rotat ing
ei .

By the well-known uncertainty relat ion

∆ x /
1

∆ k
/ σ, (19)

takingσ ! 0 results in coherent statemeasurementswith
infinite uncertainty in k-space, and zero uncertainty in
real space. This is the limit where the tradit ional flux
operates.

C. D efini t ion of t he H usim i Pr oject ion

Thepropert ies of coherent states make them a suitable
basis for expanding theflux operator to a measurabledef-
init ion, which we call the Husimi funct ion. It is defined

as a measurement of a wavefunct ion  (r ) by a coherent
state, or “test wavepacket”, writ ten as

Hu (r 0, k0, σ;  (r )) = |h | r 0, k0, σi |
2

. (20)

Keeping r 0 fixed, k0 can be rotated to produce a k-
profile, which describes the distribut ion of part icle-like
trajectories that intersect at that point. Weight ing each
of these measurements by the wavevector produces a
Husimi vector; plott ing all Husimi vectors at a point pro-
duces the full Husimi project ion. These project ions are
the sunbursts in Fig. 2, which shows Husimi project ions
for the wavefunct ions

 A (r ) = ei k 1 ·r

 B (r ) = cos(k1 · r ) , (21)

where k1 points towards the upper-right. We show the
wavevectors that generate each state in the white arrow
overlay.

Both wavefunct ions are pure momentum states which
are not spat ially localized, and const itute the building
blocksfor thewavefunct ionsaddressed in thispaper. The
plane wave  A is relevant to magnetic field states dis-
cussed in Sect ion I I I B. The cosine wave  B corresponds
to t ime-reversal symmetric wavefunct ions discussed in
Sect ions I I I A and II I C. Both  A and  B are impor-
tant for scattering wavefunct ions presented in Sect ion IV
which exhibit a mixture of both propert ies.

In systemsexhibit ing t imereversal symmetry, for every
trajectory with momentum k there is another with − k.
Thus, at every point in spacethestat ionary stateexhibits
zero flux. Theequal part icipat ion of counter-propagat ing
flux is absent in  A and evident in  B as a reflected
sunburst.

Fig. 2 also shows that as the spread of the coherent
measurement state decreases, the uncertainty in k-space
increases. This causes the Husimi project ion to become
more uniform: dist inct arrows aligning with the gener-
at ing wavevector turn into lobes and finally full circular
sunbursts. However, even in the limit of large momen-
tum uncertainty, which correlates to the flux operator,
there is st ill residual information indicated by the offset
of the center of the sunburst from the terminat ion of its
rays.

This informat ion can be retrieved by summing all of
the Husimi vectors. When all possible wavevectors at a
part icular point in real space are included in the sum, we
obtain the vector-valued Husimi flux

Hu (r 0, σ;  (r )) =

ˆ

k0 |h | r 0, k0, σi |
2

ddk0. (22)

In Appendix D, we show that asσ ! 0, the contribut ing
points in the integral over k-space to Hu (r 0, σ;  (r )) re-
duce to just the orthogonal direct ions. We can write this
relat ion as

lim
σk0 ! 0

Hu (r 0, σ;  (r )) /

dX

i = 1

ei [|h | r 0, k0ei , σi |
2
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(a) (b)

Figure 9: Husimi vectors for 32 equally-space points in k-

space are shown in grey for the double plane waves  D de-
fined in Eq.24. The uncertainty corresponds to ∆ k/ k = 30%.
The flux operator (a) averages the t rajectories, but the mult i-

modal analysis (b) accurately reflects them.  D is represen-
tat ive of the points circled in red in Figs. 7 and 8.

statearedepicted, and correlatest rongly with theHusimi
project ion with the canonical t ransformat ion.

States in the presence of a magnet ic field are an ex-
cellent opportunity to observe the benefits of the Husimi
project ion over the flux operator. In Fig. 9, magnified
views from the flux operator, mult i-modal analysis, and
full Husimi project ion from the red circles in Figs. 7 and
8 are shown. We model this point in the wavefunct ion
according to the pure momentum state

 D (~r ) = ei ~k 3 ·~r + ei ~k4 ·~r (24)

where~k3 and ~k4 are indicated by thewhitearrows. While
the mult i-modal analysis is able to properly ident ify two
independent t rajectories, the flux merely averages them.
The left column of Fig. 8, which shows the flux map,
integrated with a Gaussian kernel corresponding to the
coherent state used to generate the Husimi project ion,
is consequent ly unable to represent the classical paths
(right column). In contrast , the mult i-modal analysis in
the middle column indicates these paths with remarkable
fidelity.

C. St adium B i l l iar d Eigenst at es

Circular systems have analyt ical solut ions and rela-
t ively simple dynamics, but stadium billiard systems,
which are similar to the circular system save for an ex-
tended rectangular middle, are in contrast a study in
complexity. As a result , they have been prominent in
quantum chaos[10, 14–18] .

Fig. 10 shows three Husimi project ions for a billiard
eigenstate. The wavelength at the energy of the eigen-
state ismuch shorter than thesizeof thesystem, allowing
well-defined scars to form, which are spawned by mod-
est ly unstable and rare (among all the chaot ic orbits)
classical periodic orbits[19].

For Fig. 10a, a very large coherent state is used to gen-
erate the Husimi project ion, so that many fine features
of the wavefunct ion are washed out . Only the scar path
(seen as a rotated “v” pat tern in the depict ion) is clearly

(a) (b) (c) (d)

Figure 10: Husimi project ions for a high-energy stadium bil-
liard eigenstate (d) are shown. For each plot uses a different

spread of the measurement wavepacket . The spread is in-
dicated by the double-arrows on the bot tom, with relat ive

uncertaint ies ∆ k/ k of 5%(a), 20%(b), and 50%(c). A full
rendit ion of part (b) is provided in Fig. 1. A single sunburst ,

circled in red, is magnified at the bot tom of each represen-
tat ion. Because the system is four-fold symmet ric, only one

quarter of each representat ion is shown.

visible. The low uncertainty for this Husimi project ion is
indicated by theextremeclarity of theHusimi project ion.

Compare this to the Husimi project ion in Fig. 10c
which is generated by a small coherent state with larger
momentum uncertainty. Here, each sunburst is more am-
biguous, and local variat ions in the wavefunct ion prob-
ability amplitude have a large impact on the represen-
tat ion, making it very sensit ive to the lat t ice sampling
of the visualizat ion. In fact , the t rajectories one would
imply from this project ion seem somewhat haphazard,
since the distance between each sampling point is several
t imes larger than the coherent state.

In general, a happy medium can be found using co-
herent states between the two regimes, with the Husimi
project ion shown Fig. 10b. Trajectories are fairly well-
resolved, and local variat ionsareeasy to follow. Coherent
states of this size provide the clearest representat ion of
semi-classical paths.

Even at low energies, where the wavelength is compa-
rable to the size of the system, stadium billiards provide
another angleon theut ility of theHusimi project ion. Un-
like the circular system, in which the trajectories adding
up at a part icular point are fairly regular and predictable
by analysis, any point in a stadium billiard eigenstate
is rife with many unpredictable t rajectories, making the
Husimi project ion an ideal tool for lift ing the veil on the
underlying classical dynamics.

Fig. 11 considers three more eigenstates of the closed
stadium billiard Hamiltonian. For each calculat ion, the
size of the coherent state is kept constant , but because
the energy of these eigenstates changes, so does the cor-
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Figure 9: Husimi vectors for 32 equally-space points in k-

space are shown in grey for the double plane waves  D de-
fined in Eq.24. The uncertainty corresponds to ∆ k/ k = 30%.
The flux operator (a) averages the t rajectories, but the mult i-

modal analysis (b) accurately reflects them.  D is represen-
tat ive of the points circled in red in Figs. 7 and 8.

statearedepicted, and correlatest rongly with theHusimi
project ion with the canonical t ransformat ion.

States in the presence of a magnet ic field are an ex-
cellent opportunity to observe the benefits of the Husimi
project ion over the flux operator. In Fig. 9, magnified
views from the flux operator, mult i-modal analysis, and
full Husimi project ion from the red circles in Figs. 7 and
8 are shown. We model this point in the wavefunct ion
according to the pure momentum state

 D (~r ) = ei ~k 3 ·~r + ei ~k4 ·~r (24)

where~k3 and ~k4 are indicated by thewhitearrows. While
the mult i-modal analysis is able to properly ident ify two
independent t rajectories, the flux merely averages them.
The left column of Fig. 8, which shows the flux map,
integrated with a Gaussian kernel corresponding to the
coherent state used to generate the Husimi project ion,
is consequent ly unable to represent the classical paths
(right column). In contrast , the mult i-modal analysis in
the middle column indicates these paths with remarkable
fidelity.

C. St adium B i l l iar d Eigenst at es

Circular systems have analyt ical solut ions and rela-
t ively simple dynamics, but stadium billiard systems,
which are similar to the circular system save for an ex-
tended rectangular middle, are in contrast a study in
complexity. As a result , they have been prominent in
quantum chaos[10, 14–18] .

Fig. 10 shows three Husimi project ions for a billiard
eigenstate. The wavelength at the energy of the eigen-
state ismuch shorter than thesizeof thesystem, allowing
well-defined scars to form, which are spawned by mod-
est ly unstable and rare (among all the chaot ic orbits)
classical periodic orbits[19].

For Fig. 10a, a very large coherent state is used to gen-
erate the Husimi project ion, so that many fine features
of the wavefunct ion are washed out . Only the scar path
(seen as a rotated “v” pat tern in the depict ion) is clearly

(a) (b) (c) (d)

Figure 10: Husimi project ions for a high-energy stadium bil-
liard eigenstate (d) are shown. For each plot uses a different

spread of the measurement wavepacket . The spread is in-
dicated by the double-arrows on the bot tom, with relat ive

uncertaint ies ∆ k/ k of 5%(a), 20%(b), and 50%(c). A full
rendit ion of part (b) is provided in Fig. 1. A single sunburst ,

circled in red, is magnified at the bot tom of each represen-
tat ion. Because the system is four-fold symmet ric, only one

quarter of each representat ion is shown.

visible. The low uncertainty for this Husimi project ion is
indicated by theextremeclarity of theHusimi project ion.

Compare this to the Husimi project ion in Fig. 10c
which is generated by a small coherent state with larger
momentum uncertainty. Here, each sunburst is more am-
biguous, and local variat ions in the wavefunct ion prob-
ability amplitude have a large impact on the represen-
tat ion, making it very sensit ive to the lat t ice sampling
of the visualizat ion. In fact , the t rajectories one would
imply from this project ion seem somewhat haphazard,
since the distance between each sampling point is several
t imes larger than the coherent state.

In general, a happy medium can be found using co-
herent states between the two regimes, with the Husimi
project ion shown Fig. 10b. Trajectories are fairly well-
resolved, and local variat ionsareeasy to follow. Coherent
states of this size provide the clearest representat ion of
semi-classical paths.

Even at low energies, where the wavelength is compa-
rable to the size of the system, stadium billiards provide
another angleon theut ility of theHusimi project ion. Un-
like the circular system, in which the trajectories adding
up at a part icular point are fairly regular and predictable
by analysis, any point in a stadium billiard eigenstate
is rife with many unpredictable t rajectories, making the
Husimi project ion an ideal tool for lift ing the veil on the
underlying classical dynamics.

Fig. 11 considers three more eigenstates of the closed
stadium billiard Hamiltonian. For each calculat ion, the
size of the coherent state is kept constant , but because
the energy of these eigenstates changes, so does the cor-
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Figure 9: Husimi vectors for 32 equally-space points in k-

space are shown in grey for the double plane waves  D de-
fined in Eq.24. The uncertainty corresponds to ∆ k/ k = 30%.
The flux operator (a) averages the t rajectories, but the mult i-

modal analysis (b) accurately reflects them.  D is represen-
tat ive of the points circled in red in Figs. 7 and 8.

statearedepicted, and correlatest rongly with theHusimi
project ion with the canonical t ransformat ion.

States in the presence of a magnet ic field are an ex-
cellent opportunity to observe the benefits of the Husimi
project ion over the flux operator. In Fig. 9, magnified
views from the flux operator, mult i-modal analysis, and
full Husimi project ion from the red circles in Figs. 7 and
8 are shown. We model this point in the wavefunct ion
according to the pure momentum state

 D (~r ) = ei ~k 3 ·~r + ei ~k4 ·~r (24)

where~k3 and ~k4 are indicated by thewhitearrows. While
the mult i-modal analysis is able to properly ident ify two
independent t rajectories, the flux merely averages them.
The left column of Fig. 8, which shows the flux map,
integrated with a Gaussian kernel corresponding to the
coherent state used to generate the Husimi project ion,
is consequent ly unable to represent the classical paths
(right column). In contrast , the mult i-modal analysis in
the middle column indicates these paths with remarkable
fidelity.

C. St adium B i l l iar d Eigenst at es

Circular systems have analyt ical solut ions and rela-
t ively simple dynamics, but stadium billiard systems,
which are similar to the circular system save for an ex-
tended rectangular middle, are in contrast a study in
complexity. As a result , they have been prominent in
quantum chaos[10, 14–18] .

Fig. 10 shows three Husimi project ions for a billiard
eigenstate. The wavelength at the energy of the eigen-
state ismuch shorter than thesizeof thesystem, allowing
well-defined scars to form, which are spawned by mod-
est ly unstable and rare (among all the chaot ic orbits)
classical periodic orbits[19].

For Fig. 10a, a very large coherent state is used to gen-
erate the Husimi project ion, so that many fine features
of the wavefunct ion are washed out . Only the scar path
(seen as a rotated “v” pat tern in the depict ion) is clearly

(a) (b) (c) (d)

Figure 10: Husimi project ions for a high-energy stadium bil-
liard eigenstate (d) are shown. For each plot uses a different

spread of the measurement wavepacket . The spread is in-
dicated by the double-arrows on the bot tom, with relat ive

uncertaint ies ∆ k/ k of 5%(a), 20%(b), and 50%(c). A full
rendit ion of part (b) is provided in Fig. 1. A single sunburst ,

circled in red, is magnified at the bot tom of each represen-
tat ion. Because the system is four-fold symmet ric, only one

quarter of each representat ion is shown.

visible. The low uncertainty for this Husimi project ion is
indicated by theextremeclarity of theHusimi project ion.

Compare this to the Husimi project ion in Fig. 10c
which is generated by a small coherent state with larger
momentum uncertainty. Here, each sunburst is more am-
biguous, and local variat ions in the wavefunct ion prob-
ability amplitude have a large impact on the represen-
tat ion, making it very sensit ive to the lat t ice sampling
of the visualizat ion. In fact , the t rajectories one would
imply from this project ion seem somewhat haphazard,
since the distance between each sampling point is several
t imes larger than the coherent state.

In general, a happy medium can be found using co-
herent states between the two regimes, with the Husimi
project ion shown Fig. 10b. Trajectories are fairly well-
resolved, and local variat ionsareeasy to follow. Coherent
states of this size provide the clearest representat ion of
semi-classical paths.

Even at low energies, where the wavelength is compa-
rable to the size of the system, stadium billiards provide
another angleon theut ility of theHusimi project ion. Un-
like the circular system, in which the trajectories adding
up at a part icular point are fairly regular and predictable
by analysis, any point in a stadium billiard eigenstate
is rife with many unpredictable t rajectories, making the
Husimi project ion an ideal tool for lift ing the veil on the
underlying classical dynamics.

Fig. 11 considers three more eigenstates of the closed
stadium billiard Hamiltonian. For each calculat ion, the
size of the coherent state is kept constant , but because
the energy of these eigenstates changes, so does the cor-
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