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Characteristics of Public Health Emergencies

* Examples: Pandemic Influenza, Anthrax

* We need to prepare for a variety of potential emergencies, some of which
have never occurred.

 The timing, location, and size of emergencies are highly unpredictable.

* The systems must respond quickly and efficiently to minimize mortality
and morbidity.

* Large-scale public health emergencies are rare, giving little opportunity to
“practice”.

» Realistic system exercises of the response network are very expensive,
and hence are seldom performed.
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Agenda

Responding to an Inhalational Anthrax Attack
 The United States’ emergency response plans
* A multi-echelon inventory allocation model
e Public health policy implications
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Inhalational Anthrax: A Significant Bioterrorist
Threat

 Anthrax spores are very small and difficult to detect in the
atmosphere.

* |nhalational anthrax is the disease contracted if a sufficient
number of spores is inhaled.

 When symptoms begin to appear, it is often too late to save
patients.

 Symptoms may appear within 48 hours of inhalation.

* |If patients begin a course of antibiotics before becoming
symptomatic, survival is highly likely.
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The United States Strategic National Stockpile is
Part of a Multi-Echelon Supply Chain
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Planning Questions Asked By Policy-Makers

Local Planning
 Number of PODs?
 When to open them?
* Number/types of staff over time?

Regional Planning
e Structure of RSS-POD network?
* Transportation capacities?
* Lead times?

System Planning
e Inventory allocation over time?

* Information-sharing?
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The Distribution Network has a Tree Structure
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State Variables are Known at the Beginning of

Each Period

PODs
State variables: M+1 ._ﬁ
Demand histories, d Pt
RSSs M+2 ._%
Queue lengths, g, Pt
Echelon on-hand 1 . M+3 ._%
inventories, x, Pt
/ M+4 _%
N
SNS 2 ’ M+5 '—%
°
o °
° °
e - f—
Decision variables: M M+N-2 %
New echelon on-hand M+N-1 ._%
inventories, y,,
M+N —ﬁ
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Allocation is Constrained By Physical Requirements

Inventory On Hand

Inventory cannot be shipped to
lower echelons unless it is
currently on hand

SNS

Imbalance Constraint
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Inventory cannot be returned
to upper echelons
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Transportation Constraints Limit Shipment Sizes

Total inventory
shipped to the SNS
cannot exceed, p°

SNS
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M+3
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Total inventory leaving
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cannot exceed p, .,
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Total Patient Demands in Each Period are Random

Patient demand occurs after
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Total Patient Demands in Each Period are Random

Patient demand occurs after
shipments have been made in

PODs

RA—AA

RRI—

each period.
RSSs
1

RRA—

%._

NN )

RA—AA

iﬁ.___

RA—

Tuesday, July 31, 12



Demand, Inventory, and Capacity Limit the Patients

Served
PODs
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Linear holding costs are
charged at all locationsin [ """~ ====----—-____
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Dynamic Programming Formulation

« Let U, be the feasible decision set in period t and C,(y, q,) be
the expected cost incurred for decisions made during period t.

e The value function is
Vt(xtaqtadp) —

P P
Yteut?;tl'jq dp) (Ct(yt7 qt) -+ E[Vt‘l‘l(xt-l—l? qt—l—l) dt—l—l)]>

* This problem is intractable due to its large state space.
Instead, we construct two approximate solutions.
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Solution Method 1: Truncated Cumulative
Approximation (TCA)

e Characteristics of inventory allocation in this setting:
— Limited service capacities = Inventory shipments will be small;

— Decisions made in each period may not have long-term effects.

* |dea: In each time period, solve a myopic version of the
problem to obtain a feasible solution.

— Estimate the number of patients served using a cumulative
approximation, and

|”

— Truncate the time horizon to “several” periods.
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Solution Method 2: Lagrangian Relaxation and
Decomposition (LR)

Idea: Use Lagrangian relaxation to simplify the structure of the
problem, and then decompose by location.

Step 1: Relax the inventory imbalance and transportation constraints, and
add Lagrange multipliers.

Step 2: Reduce the size of the state space by writing the problems in terms
of inventory position.

Step 3: Relax one of the service constraints, and add Lagrange multipliers.

Step 4: Decompose the problem by location into M + N + 1 single variable
dynamic programs.

10
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Solution Method 2: Lagrangian Relaxation and
Decomposition (LR)

 The relaxed problem is a lower bound on the original value

function:
M-+ N
Vt(Xt — qt) .= Z wnt(Xnt o qnt) S Vt(xItja qlt)a df)
n=0

11

Tuesday, July 31, 12




Solution Method 2: Lagrangian Relaxation and
Decomposition (LR)

 The relaxed problem is a lower bound on the original value

function:
M+N
Vt(Xt — qt) = Z wnt(xnt _ qnt) S Vt(xlt)a qii:)a df)
n=0

e We can use this in making inventory allocation decisions:
P P 4P\ ~
Vi(xt, dp. di) =

min (Ct(yt, qt) + E[\7t+1(xt+1 — Qt+1, dt)])
Yt Eut(xqugvdg)

11
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Solution Method 2: Lagrangian Relaxation and
Decomposition (LR)

 The relaxed problem is a lower bound on the original value

function:
M+N
Vt(Xt — qt) = Z wnt(xnt _ qnt) S Vt(xlt)a qfa df)
n=0

e We can use this in making inventory allocation decisions:

E[\N/t—l—l(xH—l — Qt—@

V..,(-) has been replaced by V., (*)

Vt(xltjaqltjvd!c)) ~

min Ct(VYt,
yteut<xf,q£,dt’>( (e, @)

11
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Evaluating the Inventory Allocation Strategies

Compare inventory allocation methods currently in use by public
health authorities:

Fair Share Allocation: Inventory is “pushed” out from the SNS
and RSSs in proportion to the total demand expected at each
location.

Independent Ordering Method (Order): Solve the myopic
inventory problem for each location, and place “orders”
accordingly.

12
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Summary of Numerical Results

e Ran 23 simulation experiments

 Reported cost, average delay per patient, and average
inventory use per patient

e Observed that:
— TCA and LR methods perform best

— Fair Share method is much worse (= 40% more inventory
used and > 25% longer patient delays)

— Independent Ordering performs well under specific
conditions
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Implications of Numerical Results

e Centralized command and control is essential

 More PODs - Longer patient delays and more waste

* Dynamic staffing plans yield improved performance

* Independent Ordering is not robust

* |nformation must be collected and shared to enable
responsive and effective decision-making
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Questions?
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The Feasible Decision Set

U (xP?E qPSt Pt — {yt Yot > xor for all n =0, ..., M + N:

M+N
Z Umn()/nt — qnt) < Xmt—7m — Qmt—1m — dm,t—Tm,t—l
n=1
for all m=0,..., M;
M+N
Z Unn(Vnt — Xnt) < pme¢  forall m=0,..., M,
n=1

Yor — Xot < P(t)}

18
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The Feasible Decision Set
Imbalance Constraints
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The Feasible Decision Set

U (xP*, qP dP**") = Lyi : yoe > xoe for all n=0,..., M + N;

N

g Umn()/nt — qnt) < Xmt—71m — Amt—7m — dm,t—Tm,t—l

for all m =10, .M,

M-+N On-Hand Inventory Constraints
E Unn(Vnt — Xnt) < pme¢  forall m=0,..., M,
n=1

Yor — Xot < P(t)}

18
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The Feasible Decision Set

U (xP?E qPSt Pt — {yt Yot > xpp for all n =10, ..., M + N;
M+N
Z Umn()/nt — qnt) < Xmt—71m — Amt—7m — dm,t—Tm,t—l

n=1

fnr a” m = O’ ooy M’

forall m=20,.... M;

Transportation Constraints

18
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Lagrangian Relaxation and Decomposition (LR)

Step 1: Relax the inventory imbalance and transportation
constraints, and add Lagrange multipliers.

Vt(xit)aqitjad't)) = min (Ct(Yt,CIt) T E[Vt+1(x':+1,qtp+1ad't)+1)])
st. Vmt > Xme forallm=0,... M+ N

M+N
Z Umn()/nt — C7nt) < Xmt—1m — Amt—7m — dm,t—rm,t—l
n=1
form=0,....M
M+N
Z Umn()/nt — Xnt) <pm: forallm=0,...M
n=1

0
Yor — Xor < Py

19
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Vt(XIt)a thjvd't)) = min (Ct(Yt,CIt) T E[Vt+1(xit)_|_17q$—i—l7d$—l—l)])

s.t forall m=0,....M+ N
M-+

E Umn()/nt — C7nt) < Xmt—1m — Amt—7m — dm,t—rm,t—l

n=1

M-+N
Z Umn()/nt — Xnt) < Pmt

form=0,....M

for all m=20,.... M

19
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Lagrangian Relaxation and Decomposition (LR)

Step 1: Relax the inventory imbalance and transportation
constraints, and add Lagrange multipliers.

V; (xt,qt,dp) — m|n Ct (Ye, de) + E[Viera( t+17qt+1ad?+1)])

M-+N
— Z mt Pmt — Z Umn }/nt Xnt))

s.t. Yot Z Xot
M-+N

E Umn()/nt — qnt) < Xmit—7m — Amt—7m — Amt—7m,t—1
n=1

for m=0,....M
Yot — Xotr < P?

19
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Lagrangian Relaxation and Decomposition (LR)

Step 2: Reduce the size of the state space by setting
_ynt = Ynt ™ Ynt and _Xnt = Xnt = Yt

Vt(xir:)v qir:)a d?) = min { (Ct(Yta qt) - E[Vt—i-l(xir;)_|_17 qf_|_17 d:;)+1)])

M+N M M+N
— Z >\nt(}/nt — Xnt) — Z Hmt (pmt — Z Umn()/nt — Xnt))}
n=1 m=0 n=1
s.t. Yot = Xot
M+N
Z Umn()/nt - qnt) < Xmyt—1m — Amt—1m — Omt—7m,t—1
n=1
for m=0,....M

0
Yot — Xot < Py

Tuesday, July 31, 12




Lagrangian Relaxation and Decomposition (LR)

Step 2: Reduce the size of the state space by setting
_ynt = Ynt ™ Ynt and _Xnt = Xnt = Yt

Ve(R. d) = min { CU(3e) + E[Vesa (%8, 1.0, )

M+ N M M—+N
— Z )\nt()_/nt — )_<nt) — Z Hmt (pmt — Z Umn()_/nt — )_<nt)>}
n=1 m=0 n=1
M+N
S.t. Z UnnYnt < Xm,t—rm — Am t—7p,t—1 for all m=20,...,m
n=1

Xot < Yor < P? + Xot
Yot < ape +Xpe foralln=M+1,... M+ N
Vor < ape foral n=M+1,....M+ N

19
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Ve (X2, dP) = min E[\_/t-}-l()_('t)—H? dy 1))

M+ N M M—+N
— Z )\nt()_/nt — )_<nt) — Z Hmt (pmt — Z Umn()_/nt — )_<nt)>}
n=1 m=0 n=1
M+N
S.t. Z UnnYnt < Xm,t—rm — Am t—7p,t—1 for all m=20,...,m
n=1

- — 0 —
Xor < Yor < p; + Xot

Ynt < ant + Xpe 10 =M+1,.. M+ N
Vor < ape forall n=M+1,....M+ N

19
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Lagrangian Relaxation and Decomposition (LR)

Step 3: Relax one of the service constraints, and add Lagrange
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Lagrangian Relaxation and Decomposition (LR)

Step 3: Relax one of the service constraints, and add Lagrange
multipliers.

Vi(X¢. df) = min {C/(Yt) + E[Ven (X7 Xpy1:-dei1)]
M-+N M M~+N

— Z Ant(Vnt — Xnt) — Z Hmt (pmt — Z Umn(Vnt — )?nt))
n=1 m=0

n=1
M-+N
- Z W/nt(ant + Xpt — )_/nt)}
n=M-+1
M-+N
Z Umn)_/nt S )?m,t—Tm o dm,t—'rm,t—l for all m = O ey M
n=1
Xot < Yot < P(t) + Xot
Vot < apt foralln=M+1,... M+ N
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Lagrangian Relaxation and Decomposition (LR)

Step 4: Decompose the problem by location into M + N + 1 single

variable dynamic programs.

20
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Lagrangian Relaxation and Decomposition (LR)

* For the PODs:

Unt(Xnt) = {ym<ira1 \ {C,’,t()'/nt) + (Jpe + Yot — Ane)(Vnt — Xnt) — Yntant

+E[n.ee1(Foe — D)l }
 For the RSSs:
wmt()?mt) = min {Cr/nt()_/mt) + E[Am,H—Tm()_(mt — Dmt,t+Tm—1)]

_)\mt()_/mt — )_<mt) — UmtPmt + E[wm,t—l—l()_/mt — Dmt)]}

20
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Lagrangian Relaxation and Decomposition (LR)

* For the PODs:

Zbnt()?nt) — {)'/m<ig | {C,,n()_/nt) + (,U,qut + Ynt — )\nt)()_/nt — >_<nt) — Yntdnt

+E[n.ee1(Foe — D)l }
 For the RSSs:
wmt()?mt) = min {Cr/nt()_/mt) + E[Am,H—Tm()_(mt — Dmt,t+Tm—1)]

—Amt(Vmt — Xmt) — tmtPmt + E[Vm t+1(Vme — Dmt)]}

 For the SNS:

Vorlfor) = min  {Chu(F0) + E[Bo.erro(For — Dorerro 1)
{XOtSYOtSXOt+p?}

—totpor + E[wo t+1(Vor — DOt)]}

20
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The RSS Penalty Function

Amt()?;ntp‘a Ly 7)

such that

min Z Umn {[(,u,(ft + Ynt — Ant)
neP

_(U/lvj,t+1 + Vnt+1 — )‘n,t+1)]()7nt - )_/;t)
+Cre(Tnt) = Che(Tne)]

21
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The SNS Penalty Function

ANor(Xoel A, p1,y) = min z (Cr,nt()_’mt) — Cone(Vme)

_)‘mt()_/mt o )_/;';n‘)
+E[wm,t+1()_/mt o Dmt|)\; “77)
~tm,e41(Tine — Dt 1,7)])

such that Z Ve < Xgy-

22
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Sample Computational Results

Average Waiting Time Per Person at Each POD
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Sample Computational Results

Average Waiting Time Per Person at Each POD
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Sample Computational Results

Average Waiting Time Per Person at Each POD

45
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N W TCA
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E mLR
2 W Order
M Fair Share
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Simulation Number
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Inventory Allocation Numerical Results

TCA LR Order Fair Share
Simulation | WSLB | LRLB | WSLB |LRLB | WSLB | LRLB | WSLB | LR LB
1.11 1.431 1.634 1.423 1.625 1.575 1.798 2.465 2.814
1.12 1.094 8.931 1.135 9.263 1.155 9.433 2.047 16.715
1.13 1.074 2.208 1.089 2.240 1.089 2.240 1.122 2.307
1.14 1.130 2.609 1.166 2.693 3.865 8.928 1.839 4.248
1.15 1.035 1.992 1.040 2.001 1.050 2.020 1.052 2.025
1.21 1.344 1.045 1.343 1.044 1.408 1.095 3.069 2.386
1.22 3.393 1.374 3.602 1.459 3.385 1.370 | 19.519 7.903
1.24 1.137 1.973 1.171 2.033 3.787 6.572 2.067 3.587
2.11 1.140 4.413 1.160 4.491 1.261 4.880 1.499 5.802
2.12 1.557 2.194 1.553 2.188 1.699 2.395 2.386 3.362
2.13 1.550 1.406 1.558 1.413 1.680 1.524 2.784 2.526
2.21 1.536 3.379 1.578 3.472 1.723 3.791 2.936 6.459
2.22 2.072 1.527 2.136 1.575 2.291 1.689 7.032 5.185
2.23 3.793 1.202 4.051 1.284 4.033 1.278 16.598 5.259
2.31 1.176 2.263 1.181 2.273 1.265 2.436 1.353 2.604
2.32 1.195 2.902 1.195 2.900 1.247 3.028 1.332 3.232
2.33 1.243 2.003 1.240 1.998 1.280 2.061 1.410 2.271
3.11 1.145 1.619 1.138 1.609 1.149 1.625 1.249 1.766
3.12 1.324 1.361 1.312 1.348 1.336 1.372 1.876 1.928
3.13 1.590 2.021 1.581 2.010 1.770 2.250 2.599 3.304
3.14 1.978 2.303 1.935 2.253 2.248 2.617 3.673 4.276
3.23 3.964 1.135 4.059 1.162 4.227 1.210 26.509 7.588
3.24 5.151 1.374 5.039 1.344 5.493 1.465 31.156 8.311
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Simulation Models

Goals: Help public health planners to

1. Explore how capacities interact with and affect one
another;

2. Understand the impact of uncertainty on their emergency
response plans.

Models:
1. Dynamic POD Simulator (D-PODS)

2. Emergency Supply Chain Operations Evaluator (ESCOE)
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D-PODS: The Dynamic POD Simulator

Step 1: Construct the Model

Cornell University

Main Menu

The first station is the immediate station after entering the PoD. All

Input duration of the campaign in days subsequent stations should be listed in a downward flowing manner.

Meaning, if station j can be reached from station i, then i should be listed
before station j. Likewise, one must exit from the last station.

Input hours of operation per day

St (fraeed . Station Names Table
Construct Model Number of Stations {maximum is 15) Siation 1 2 3 4
Input station names and exits Station Names Name Greeting Triage Medical Eval Drug Dispensing Exit
Generate Input station transition probabilities Transition Rates
Arrivals
—_— _ R The transition rate matrix below indicates the probability of flowing from
)¢ 3
Input PoD capacity =0000 state i to state j within the PoD. The Exit column in the transition rate matrix
Set Servi below the probability of flowing out of the PoD from any of the stations.
U= Return to Main Page
Parameters
e Transition Rates Table
Greeting Triage Medical Eval Drug Dispensing
Establish

Staffing Levels

Run Simulation
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D-PODS: The Dynamic POD Simulator

—
5%

Cornell University

©) Step 1: Construct the Model

The first station is the immediate station after entering the PoD. All

. Interval

Input number of arrival intervals
Number

Input start time
{Must be input in time format)
Input number of arrival types. Arrival
types include single person, families,
- elderly, non english speakers, etc.
Generate chart based on information
S provided in steps A and B
= Fill in the highlighted cells of the chart
on the right based on the headers

Return to Main Page

Hours per
Interval

2.00
2.00
2.00
2.00
2.00

2.00
2.00
2.00
2.00
2.00
2.00
2.00

Interval
Start
7:00 AM
9:00 AM
11:00 AM
1:00 PM
3:00 PM
5:00 PM
7:00 PM
9:00 PM
11:00 PM
1:00 AM
3:00 AM
5:00 AM

Interval End Arrivals Per

Time
9:00 AM
11:00 AM
1:00 PM
3:00 PM
5:00 PM
7:00 PM
9:00 PM
11:00 PM
1:00 AM
3:00 AM
5:00 AM
7:00 AM

Arrivals Per

Hour: Type 1 Hour: Type 2

300
200
500
500
700
400
200
100
100
50
0

150
100
250
250
350
200
100
50
50
25
0
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D-PODS: The Dynamic POD Simulator

fest
%‘32)} Step 1: Construct the Model

Cornell University

T | . L o N The first station is the immediate station after entering the PoD. All

Step 2: Input Arrival Rate Information
Cq
- Patients Waiting in Queue at Dispensing Station
Input number of ;
0 95th Percentile « Total Staff Available
Input start time
= {Must be input ir 120.00
Input number of ;
types include sir
— elderly, non engl 100.00 -
Generate chart t «
s provided in steps 80.00
= Fill in the highlig §3
on the right basef
R S 60.00
] Return to Main F
Bl 40.00
20.00
0.00 30.00 40.00 50.00 60.00
Time (Hours)
28
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Evaluator

Simulation End Time:

Construct the Network

Describe the Lead Times

Describe the Inventory

Describe the SNS

Describe the FDSs

Describe the RSSs

Nescribe the PON Tunes

ESCOE Menu

In order to run the program, follow the steps as shown below. The
program may not work if executed in the incorrect order.

Simulation Start Time:
Period Length (Hours):
Number of Periods:
Day:
Time:

8:00 AM
2
24
3
8:00 AM

Network

Lead Times

Inventory

SNS

FDSs

ESCOE: The Emergency Supply Chain Operations

29
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ESCOE: The Emergency Supply Chain Operations
Evaluator

ESCOE Menu

Ste

Patients

Patient Demand in Each Time Period at POD
Type E served by RSS C

60

50

40

30

* o
® * o
20 "—0—;,"‘.

10

0 2 - 6 8 10 12 14 16 18 20 22 24

Time (Periods)

Describe the RSSs

Nescribe the PON Tunes 29
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