Optimizing Medical Countermeasure Distribution Networks: Saving Lives with Operations Research

Kathleen King
School of Operations Research and Information Engineering
Cornell University
July 2012

• Examples: Pandemic Influenza, Anthrax

• Examples: Pandemic Influenza, Anthrax

- Examples: Pandemic Influenza, Anthrax
- We need to prepare for a variety of potential emergencies, some of which have never occurred.

- Examples: Pandemic Influenza, Anthrax
- We need to prepare for a variety of potential emergencies, some of which have never occurred.

- Examples: Pandemic Influenza, Anthrax
- We need to prepare for a variety of potential emergencies, some of which have never occurred.
- The timing, location, and size of emergencies are highly unpredictable.

- Examples: Pandemic Influenza, Anthrax
- We need to prepare for a variety of potential emergencies, some of which have never occurred.
- The timing, location, and size of emergencies are highly unpredictable.

- Examples: Pandemic Influenza, Anthrax
- We need to prepare for a variety of potential emergencies, some of which have never occurred.
- The timing, location, and size of emergencies are highly unpredictable.
- The systems must respond quickly and efficiently to minimize mortality and morbidity.

- Examples: Pandemic Influenza, Anthrax
- We need to prepare for a variety of potential emergencies, some of which have never occurred.
- The timing, location, and size of emergencies are highly unpredictable.
- The systems must respond quickly and efficiently to minimize mortality and morbidity.

- Examples: Pandemic Influenza, Anthrax
- We need to prepare for a variety of potential emergencies, some of which have never occurred.
- The timing, location, and size of emergencies are highly unpredictable.
- The systems must respond quickly and efficiently to minimize mortality and morbidity.
- Large-scale public health emergencies are rare, giving little opportunity to "practice".

- Examples: Pandemic Influenza, Anthrax
- We need to prepare for a variety of potential emergencies, some of which have never occurred.
- The timing, location, and size of emergencies are highly unpredictable.
- The systems must respond quickly and efficiently to minimize mortality and morbidity.
- Large-scale public health emergencies are rare, giving little opportunity to "practice".

- Examples: Pandemic Influenza, Anthrax
- We need to prepare for a variety of potential emergencies, some of which have never occurred.
- The timing, location, and size of emergencies are highly unpredictable.
- The systems must respond quickly and efficiently to minimize mortality and morbidity.
- Large-scale public health emergencies are rare, giving little opportunity to "practice".
- Realistic system exercises of the response network are very expensive, and hence are seldom performed.

Agenda

Responding to an Inhalational Anthrax Attack

- The United States' emergency response plans
- A multi-echelon inventory allocation model
- Public health policy implications

Inhalational Anthrax: A Significant Bioterrorist Threat

- Anthrax spores are very small and difficult to detect in the atmosphere.
- Inhalational anthrax is the disease contracted if a sufficient number of spores is inhaled.
- When symptoms begin to appear, it is often too late to save patients.
- Symptoms may appear within 48 hours of inhalation.
- If patients begin a course of antibiotics before becoming symptomatic, survival is highly likely.

The United States Strategic National Stockpile is

Local Planning

- Number of PODs?
- When to open them?
- Number/types of staff over time?

Local Planning

- Number of PODs?
- When to open them?
- Number/types of staff over time?

Regional Planning

- Structure of RSS-POD network?
- Transportation capacities?
- Lead times?

Local Planning

- Number of PODs?
- When to open them?
- Number/types of staff over time?

Regional Planning

- Structure of RSS-POD network?
- Transportation capacities?
- Lead times?

System Planning

- Inventory allocation over time?
- Information-sharing?

The Distribution Network has a Tree Structure

State Variables are Known at the Beginning of Each Period

Allocation is Constrained By Physical Requirements

Transportation Constraints Limit Shipment Sizes

Total Patient Demands in Each Period are Random

Total Patient Demands in Each Period are Random

Demand, Inventory, and Capacity Limit the Patients Served

Holding and Backorder Costs are Incurred

• Let U_t be the feasible decision set in period t and $C_t(\mathbf{y_t}, \mathbf{q_t})$ be the expected cost incurred for decisions made during period t.

• Let U_t be the feasible decision set in period t and $C_t(\mathbf{y_t}, \mathbf{q_t})$ be the expected cost incurred for decisions made during period t.

$$V_t(\mathbf{x_t^p, q_t^p, d_t^p}) = \min_{\mathbf{y_t} \in \mathcal{U}_t(\mathbf{x_t^p, q_t^p, d_t^p})} \left(C_t(\mathbf{y_t, q_t}) + E[V_{t+1}(\mathbf{x_{t+1}^p, q_{t+1}^p, d_{t+1}^p})] \right)$$

- Let U_t be the feasible decision set in period t and $C_t(\mathbf{y_t}, \mathbf{q_t})$ be the expected cost incurred for decisions made during period t.
- The value function is

$$\begin{aligned} & V_t(\mathbf{x_t^p, q_t^p, d_t^p}) = \\ & \min_{\mathbf{y_t} \in \mathcal{U}_t(\mathbf{x_t^p, q_t^p, d_t^p})} \left(C_t(\mathbf{y_t, q_t}) + E[V_{t+1}(\mathbf{x_{t+1}^p, q_{t+1}^p, d_{t+1}^p})] \right) \end{aligned}$$

- Let U_t be the feasible decision set in period t and $C_t(\mathbf{y_t}, \mathbf{q_t})$ be the expected cost incurred for decisions made during period t.
- The value function is

$$\begin{aligned} & V_t(\mathbf{x_t^p, q_t^p, d_t^p}) = \\ & \min_{\mathbf{y_t} \in \mathcal{U}_t(\mathbf{x_t^p, q_t^p, d_t^p})} \left(C_t(\mathbf{y_t, q_t}) + E[V_{t+1}(\mathbf{x_{t+1}^p, q_{t+1}^p, d_{t+1}^p})] \right) \end{aligned}$$

- Let U_t be the feasible decision set in period t and $C_t(\mathbf{y_t}, \mathbf{q_t})$ be the expected cost incurred for decisions made during period t.
- The value function is

$$\begin{aligned} & V_t(\mathbf{x_t^p, q_t^p, d_t^p}) = \\ & \min_{\mathbf{y_t} \in \mathcal{U}_t(\mathbf{x_t^p, q_t^p, d_t^p})} \left(C_t(\mathbf{y_t, q_t}) + E[V_{t+1}(\mathbf{x_{t+1}^p, q_{t+1}^p, d_{t+1}^p})] \right) \end{aligned}$$

- Let U_t be the feasible decision set in period t and $C_t(\mathbf{y_t}, \mathbf{q_t})$ be the expected cost incurred for decisions made during period t.
- The value function is

$$\begin{aligned} & V_t(\mathbf{x_t^p, q_t^p, d_t^p}) = \\ & \min_{\mathbf{y_t} \in \mathcal{U}_t(\mathbf{x_t^p, q_t^p, d_t^p})} \left(C_t(\mathbf{y_t, q_t}) + E[V_{t+1}(\mathbf{x_{t+1}^p, q_{t+1}^p, d_{t+1}^p})] \right) \end{aligned}$$

- Let U_t be the feasible decision set in period t and $C_t(\mathbf{y_t}, \mathbf{q_t})$ be the expected cost incurred for decisions made during period t.
- The value function is

$$\begin{aligned} & V_t(\mathbf{x_t^p, q_t^p, d_t^p}) = \\ & \min_{\mathbf{y_t} \in \mathcal{U}_t(\mathbf{x_t^p, q_t^p, d_t^p})} \left(C_t(\mathbf{y_t, q_t}) + E[V_{t+1}(\mathbf{x_{t+1}^p, q_{t+1}^p, d_{t+1}^p})] \right) \end{aligned}$$

Dynamic Programming Formulation

- Let U_t be the feasible decision set in period t and $C_t(\mathbf{y_t}, \mathbf{q_t})$ be the expected cost incurred for decisions made during period t.
- The value function is

$$\begin{aligned} & V_t(\mathbf{x_t^p, q_t^p, d_t^p}) = \\ & \min_{\mathbf{y_t} \in \mathcal{U}_t(\mathbf{x_t^p, q_t^p, d_t^p})} \left(C_t(\mathbf{y_t, q_t}) + E[V_{t+1}(\mathbf{x_{t+1}^p, q_{t+1}^p, d_{t+1}^p})] \right) \end{aligned}$$

This problem is intractable due to its large state space.
 Instead, we construct two approximate solutions.

Solution Method 1: Truncated Cumulative Approximation (TCA)

- Characteristics of inventory allocation in this setting:
 - Limited service capacities → Inventory shipments will be small;
 - Decisions made in each period may not have long-term effects.
- Idea: In each time period, solve a myopic version of the problem to obtain a feasible solution.
 - Estimate the number of patients served using a cumulative approximation, and
 - Truncate the time horizon to "several" periods.

Idea: Use Lagrangian relaxation to simplify the structure of the problem, and then decompose by location.

- **Step 1:** Relax the inventory imbalance and transportation constraints, and add Lagrange multipliers.
- **Step 2:** Reduce the size of the state space by writing the problems in terms of inventory position.
- **Step 3:** Relax one of the service constraints, and add Lagrange multipliers.
- **Step 4:** Decompose the problem by location into M + N + 1 single variable dynamic programs.

 The relaxed problem is a lower bound on the original value function:

$$\tilde{V}_t(\mathbf{x_t} - \mathbf{q_t}) := \sum_{n=0}^{M+N} \psi_{nt}(\mathbf{x}_{nt} - \mathbf{q}_{nt}) \leq V_t(\mathbf{x_t^p}, \mathbf{q_t^p}, \mathbf{d_t^p})$$

 The relaxed problem is a lower bound on the original value function:

$$\tilde{V}_t(\mathbf{x_t} - \mathbf{q_t}) := \sum_{n=0}^{M+N} \psi_{nt}(\mathbf{x}_{nt} - \mathbf{q}_{nt}) \leq V_t(\mathbf{x_t^p}, \mathbf{q_t^p}, \mathbf{d_t^p})$$

We can use this in making inventory allocation decisions:

$$egin{aligned} V_t(\mathbf{x_t^p, q_t^p, d_t^p}) &pprox \ \min_{\mathbf{y_t} \in \mathcal{U}_t(\mathbf{x_t^p, q_t^p, d_t^p})} \left(C_t(\mathbf{y_t, q_t}) + E[ilde{V}_{t+1}(\mathbf{x_{t+1} - q_{t+1}, d_t})]
ight) \end{aligned}$$

 The relaxed problem is a lower bound on the original value function:

$$ilde{V}_t(\mathbf{x_t} - \mathbf{q_t}) := \sum_{n=0}^{M+N} \psi_{nt}(x_{nt} - q_{nt}) \leq V_t(\mathbf{x_t^p}, \mathbf{q_t^p}, \mathbf{d_t^p})$$

We can use this in making inventory allocation decisions:

$$\begin{split} & V_t(\mathbf{x}_t^p, \mathbf{q}_t^p, \mathbf{d}_t^p) \approx \\ & \min_{\mathbf{y}_t \in \mathcal{U}_t(\mathbf{x}_t^p, \mathbf{q}_t^p, \mathbf{d}_t^p)} \left(\mathit{C}_t(\mathbf{y}_t, \mathbf{q}_t) + \underbrace{\mathit{E}[\tilde{V}_{t+1}(\mathbf{x}_{t+1} - \mathbf{q}_{t+1}, \mathbf{d}_t)]} \right) \\ & \mathsf{V}_{t+1}(\cdot) \text{ has been replaced by } \tilde{\mathsf{V}}_{t+1}(\cdot) \end{split}$$

Evaluating the Inventory Allocation Strategies

Compare inventory allocation methods currently in use by public health authorities:

Fair Share Allocation: Inventory is "pushed" out from the SNS and RSSs in proportion to the total demand expected at each location.

Independent Ordering Method (Order): Solve the myopic inventory problem for each location, and place "orders" accordingly.

Summary of Numerical Results

- Ran 23 simulation experiments
- Reported cost, average delay per patient, and average inventory use per patient
- Observed that:
 - TCA and LR methods perform best
 - Fair Share method is much worse (≥ 40% more inventory used and ≥ 25% longer patient delays)
 - Independent Ordering performs well under specific conditions

Implications of Numerical Results

- Centralized command and control is essential
- More PODs → Longer patient delays and more waste
- Dynamic staffing plans yield improved performance
- Independent Ordering is not robust
- Information must be collected and shared to enable responsive and effective decision-making

Acknowledgments

Jack Muckstadt
Christine Barnett, Nathaniel Hupert, and Peter Jackson
Sven Leyffer and Todd Munson
The Krell Institute
The Department of Energy

Questions?

Extra Slides

$$\mathcal{U}_{t}(\mathbf{x}_{t}^{\mathsf{past}}, \mathbf{q}_{t}^{\mathsf{past}}, \mathbf{d}_{t}^{\mathsf{past}}) = \left\{ \mathbf{y}_{t} : y_{nt} \geq x_{nt} \text{ for all } n = 0, ..., M + N; \right. \\ \left. \sum_{n=1}^{M+N} u_{mn}(y_{nt} - q_{nt}) \leq x_{m,t-\tau_{m}} - q_{m,t-\tau_{m}} - d_{m,t-\tau_{m},t-1} \right. \\ \left. \text{for all } m = 0, ..., M; \right. \\ \left. \sum_{n=1}^{M+N} u_{mn}(y_{nt} - x_{nt}) \leq p_{mt} \quad \text{for all } m = 0, ..., M; \right. \\ \left. y_{0t} - x_{0t} \leq p_{t}^{0} \right\}$$

Imbalance Constraints

$$\mathcal{U}_t(\mathbf{x_t^{past}}, \mathbf{q_t^{past}}, \mathbf{d_t^{past}}) = \left\{ \mathbf{y_t} : v_{nt} \ge x_{nt} \text{ for all } n = 0, ..., M + N; \right. \\ \sum_{n=1}^{M+N} u_{mn}(y_{nt} - q_{nt}) \le x_{m,t-\tau_m} - q_{m,t-\tau_m} - d_{m,t-\tau_m,t-1} \\ \text{ for all } m = 0, ..., M; \\ \sum_{n=1}^{M+N} u_{mn}(y_{nt} - x_{nt}) \le p_{mt} \text{ for all } m = 0, ..., M; \\ y_{0t} - x_{0t} \le p_t^0 \right\}$$

$$\mathcal{U}_{t}(\mathbf{x}_{t}^{\mathsf{past}}, \mathbf{q}_{t}^{\mathsf{past}}, \mathbf{d}_{t}^{\mathsf{past}}) = \left\{ \mathbf{y}_{t} : y_{nt} \geq x_{nt} \text{ for all } n = 0, ..., M + N; \right.$$

$$\sum_{n=1}^{M+N} u_{mn}(y_{nt} - q_{nt}) \leq x_{m,t-\tau_{m}} - q_{m,t-\tau_{m}} - d_{m,t-\tau_{m},t-1} \right.$$

$$\text{for all } m = 0, ..., M;$$

$$\sum_{n=1}^{M+N} u_{mn}(y_{nt} - x_{nt}) \leq p_{mt} \text{ for all } m = 0, ..., M;$$

$$y_{0t} - x_{0t} \leq p_{t}^{0} \right\}$$

$$\mathcal{U}_{t}(\mathbf{x}_{t}^{\mathsf{past}}, \mathbf{q}_{t}^{\mathsf{past}}, \mathbf{d}_{t}^{\mathsf{past}}) = \left\{ \mathbf{y}_{t} : y_{nt} \geq x_{nt} \text{ for all } n = 0, ..., M + N; \right.$$

$$\sum_{n=1}^{M+N} u_{mn}(y_{nt} - q_{nt}) \leq x_{m,t-\tau_{m}} - q_{m,t-\tau_{m}} - d_{m,t-\tau_{m},t-1}$$

$$\text{for all } m = 0, ..., M;$$

$$\sum_{n=1}^{M+N} u_{mn}(y_{nt} - x_{nt}) \leq p_{mt} \text{ for all } m = 0, ..., M;$$

$$y_{0t} - x_{0t} \leq p_{t}^{0} \right\}$$
Transportation Constraints

Step 1: Relax the inventory imbalance and transportation constraints, and add Lagrange multipliers.

$$\begin{split} V_{t}(\mathbf{x}_{t}^{\mathbf{p}}, \mathbf{q}_{t}^{\mathbf{p}}, \mathbf{d}_{t}^{\mathbf{p}}) &= \min \left(C_{t}(\mathbf{y}_{t}, \mathbf{q}_{t}) + E[V_{t+1}(\mathbf{x}_{t+1}^{\mathbf{p}}, \mathbf{q}_{t+1}^{\mathbf{p}}, \mathbf{d}_{t+1}^{\mathbf{p}})] \right) \\ \text{s.t. } y_{mt} &\geq x_{mt} \quad \text{for all } m = 0, ..., M + N \\ \sum_{n=1}^{M+N} u_{mn}(y_{nt} - q_{nt}) &\leq x_{m,t-\tau_{m}} - q_{m,t-\tau_{m}} - d_{m,t-\tau_{m},t-1} \\ &\qquad \qquad \text{for } m = 0, ..., M \\ \sum_{n=1}^{M+N} u_{mn}(y_{nt} - x_{nt}) &\leq p_{mt} \quad \text{for all } m = 0, ..., M \\ y_{0t} - x_{0t} &\leq p_{t}^{0} \end{split}$$

Step 1: Relax the inventory imbalance and transportation constraints, and add Lagrange multipliers.

$$V_{t}(\mathbf{x_{t}^{p}}, \mathbf{q_{t}^{p}}, \mathbf{d_{t}^{p}}) = \min \left(C_{t}(\mathbf{y_{t}}, \mathbf{q_{t}}) + E[V_{t+1}(\mathbf{x_{t+1}^{p}}, \mathbf{q_{t+1}^{p}}, \mathbf{d_{t+1}^{p}})] \right)$$
s.t $y_{mt} \ge x_{mt}$ for all $m = 0, ..., M + N$

$$\sum_{n=1}^{M+N} u_{mn}(y_{nt} - q_{nt}) \le x_{m,t-\tau_{m}} - q_{m,t-\tau_{m}} - d_{m,t-\tau_{m},t-1}$$
for $m = 0, ..., M$

$$\sum_{n=1}^{M+N} u_{mn}(y_{nt} - x_{nt}) \le p_{mt}$$
 for all $m = 0, ..., M$

$$y_{0t} - x_{0t} \le p_{t}^{0}$$

Step 1: Relax the inventory imbalance and transportation constraints, and add Lagrange multipliers.

$$V_{t}(\mathbf{x}_{t}^{\mathbf{p}}, \mathbf{q}_{t}^{\mathbf{p}}, \mathbf{d}_{t}^{\mathbf{p}}) = \min \left\{ \left(C_{t}(\mathbf{y}_{t}, \mathbf{q}_{t}) + E[V_{t+1}(\mathbf{x}_{t+1}^{\mathbf{p}}, \mathbf{q}_{t+1}^{\mathbf{p}}, \mathbf{d}_{t+1}^{\mathbf{p}})] \right) - \sum_{m=1}^{M+N} \lambda_{nt}(y_{nt} - x_{nt}) - \sum_{m=0}^{M} \mu_{mt} \left(p_{mt} - \sum_{n=1}^{M+N} u_{mn}(y_{nt} - x_{nt}) \right) \right\}$$
s.t. $y_{0t} \geq x_{0t}$

$$\sum_{n=1}^{M+N} u_{mn}(y_{nt} - q_{nt}) \leq x_{m,t-\tau_{m}} - q_{m,t-\tau_{m}} - d_{m,t-\tau_{m},t-1}$$
for $m = 0, ..., M$

$$y_{0t} - x_{0t} \leq p_{t}^{0}$$

Step 2: Reduce the size of the state space by setting

$$\begin{aligned} \overline{y}_{nt} &= y_{nt} - q_{nt} \text{ and } \overline{x}_{nt} = x_{nt} - q_{nt}. \\ V_t(\mathbf{x}_t^p, \mathbf{q}_t^p, \mathbf{d}_t^p) &= \min \left\{ \left(C_t(\mathbf{y}_t, \mathbf{q}_t) + E[V_{t+1}(\mathbf{x}_{t+1}^p, \mathbf{q}_{t+1}^p, \mathbf{d}_{t+1}^p)] \right) \\ &- \sum_{n=1}^{M+N} \lambda_{nt}(y_{nt} - x_{nt}) - \sum_{m=0}^{M} \mu_{mt} \left(p_{mt} - \sum_{n=1}^{M+N} u_{mn}(y_{nt} - x_{nt}) \right) \right\} \\ \text{s.t. } y_{0t} &\geq x_{0t} \\ \sum_{n=1}^{M+N} u_{mn}(y_{nt} - q_{nt}) \leq x_{m,t-\tau_m} - q_{m,t-\tau_m} - d_{m,t-\tau_m,t-1} \\ &\qquad \qquad \text{for } m = 0, ..., M \\ y_{0t} - x_{0t} \leq p_t^0 \end{aligned}$$

Step 2: Reduce the size of the state space by setting

$$\overline{y}_{nt} = y_{nt} - q_{nt}$$
 and $\overline{x}_{nt} = x_{nt} - q_{nt}$.

$$\begin{split} & \bar{V}_t(\bar{\mathbf{x}}_t^{\mathbf{p}}, \mathbf{d}_t^{\mathbf{p}}) = \min \left\{ C_t'(\bar{\mathbf{y}}_t) + E[\bar{V}_{t+1}(\bar{\mathbf{x}}_{t+1}^{\mathbf{p}}, \mathbf{d}_{t+1}^{\mathbf{p}})] \right. \\ & \left. - \sum_{n=1}^{M+N} \lambda_{nt}(\bar{y}_{nt} - \bar{x}_{nt}) - \sum_{m=0}^{M} \mu_{mt} \left(p_{mt} - \sum_{n=1}^{M+N} u_{mn}(\bar{y}_{nt} - \bar{x}_{nt}) \right) \right\} \\ & \text{s.t. } \sum_{n=1}^{M+N} u_{mn} \bar{y}_{nt} \leq \bar{x}_{m,t-\tau_m} - d_{m,t-\tau_m,t-1} \text{ for all } m = 0,...,m \\ & \bar{x}_{0t} \leq \bar{y}_{0t} \leq p_t^0 + \bar{x}_{0t} \\ & \bar{y}_{nt} \leq a_{nt} + \bar{x}_{nt} \text{ for all } n = M+1,...,M+N \\ & \bar{y}_{nt} \leq a_{nt} \text{ for all } n = M+1,...,M+N \end{split}$$

Step 2: Reduce the size of the state space by setting

$$\overline{\mathbf{y}}_{\mathsf{nt}} = \mathbf{y}_{\mathsf{nt}} - \mathbf{q}_{\mathsf{nt}} \text{ and } \overline{\mathbf{x}}_{\mathsf{nt}} = \mathbf{x}_{\mathsf{nt}} - \mathbf{q}_{\mathsf{nt}}.$$

$$\overline{V}_{t}(\overline{\mathbf{x}}_{t}^{\mathbf{p}}, \mathbf{d}_{t}^{\mathbf{p}}) = \min \left(C_{t}'(\overline{\mathbf{y}}_{t}) + E[\overline{V}_{t+1}(\overline{\mathbf{x}}_{t+1}^{\mathbf{p}}, \mathbf{d}_{t+1}^{\mathbf{p}})] \right)$$

$$- \sum_{n=1}^{M+N} \lambda_{nt}(\overline{y}_{nt} - \overline{x}_{nt}) - \sum_{m=0}^{M} \mu_{mt} \left(p_{mt} - \sum_{n=1}^{M+N} u_{mn}(\overline{y}_{nt} - \overline{x}_{nt}) \right) \right\}$$

$$\text{s.t. } \sum_{n=1}^{M+N} u_{mn} \overline{y}_{nt} \leq \overline{x}_{m,t-\tau_{m}} - d_{m,t-\tau_{m},t-1} \text{ for all } m = 0, ..., m$$

$$\overline{x}_{0t} \leq \overline{y}_{0t} \leq p_{t}^{0} + \overline{x}_{0t}$$

$$\overline{y}_{nt} \leq a_{nt} + \overline{x}_{nt} \text{ for all } n = M+1, ..., M+N$$

$$\overline{y}_{nt} \leq a_{nt} \text{ for all } n = M+1, ..., M+N$$

Step 3: Relax one of the service constraints, and add Lagrange multipliers.

$$\begin{split} & \bar{V}_t(\bar{\mathbf{x}}_t^{\mathbf{p}}, \mathbf{d}_t^{\mathbf{p}}) = \min \left\{ C_t'(\bar{\mathbf{y}}_t) + E[\bar{V}_{t+1}(\bar{\mathbf{x}}_{t+1}^{\mathbf{p}}, \mathbf{d}_{t+1}^{\mathbf{p}})] \right. \\ & \left. - \sum_{n=1}^{M+N} \lambda_{nt}(\bar{y}_{nt} - \bar{x}_{nt}) - \sum_{m=0}^{M} \mu_{mt} \left(p_{mt} - \sum_{n=1}^{M+N} u_{mn}(\bar{y}_{nt} - \bar{x}_{nt}) \right) \right\} \\ & \text{s.t. } \sum_{n=1}^{M+N} u_{mn} \bar{y}_{nt} \leq \bar{x}_{m,t-\tau_m} - d_{m,t-\tau_m,t-1} \text{ for all } m = 0,...,m \\ & \bar{x}_{0t} \leq \bar{y}_{0t} \leq p_t^0 + \bar{x}_{0t} \\ & \bar{y}_{nt} \leq a_{nt} + \bar{x}_{nt} \text{ for all } n = M+1,...,M+N \\ & \bar{y}_{nt} \leq a_{nt} \text{ for all } n = M+1,...,M+N \end{split}$$

Step 3: Relax one of the service constraints, and add Lagrange multipliers.

$$\begin{split} \bar{V}_t(\bar{\mathbf{x}}_t^{\mathbf{p}}, \mathbf{d}_t^{\mathbf{p}}) &= \min \left\{ C_t'(\bar{\mathbf{y}}_t) + E[\bar{V}_{t+1}(\bar{\mathbf{x}}_{t+1}^{\mathbf{p}}, \mathbf{d}_{t+1}^{\mathbf{p}})] \right. \\ &- \sum_{n=1}^{M+N} \lambda_{nt}(\bar{y}_{nt} - \bar{x}_{nt}) - \sum_{m=0}^{M} \mu_{mt} \left(p_{mt} - \sum_{n=1}^{M+N} u_{mn}(\bar{y}_{nt} - \bar{x}_{nt}) \right) \right\} \\ \text{s.t. } \sum_{n=1}^{M+N} u_{mn} \bar{y}_{nt} \leq \bar{x}_{m,t-\tau_m} - d_{m,t-\tau_m,t-1} \text{ for all } m = 0, ..., m \\ \bar{x}_{0t} \leq \bar{y}_{0t} \leq p_t^0 + \bar{x}_{0t} \\ \bar{y}_{nt} \leq a_{nt} + \bar{x}_{nt} \text{ for all } n = M+1, ..., M+N \\ \bar{y}_{nt} \leq a_{nt} \text{ for all } n = M+1, ..., M+N \end{split}$$

Step 3: Relax one of the service constraints, and add Lagrange multipliers.

$$\begin{split} \tilde{V}_t(\overline{\mathbf{x}}_{\mathbf{t}}^{\mathbf{p}}, \mathbf{d}_{\mathbf{t}}^{\mathbf{p}}) &= \min \left\{ C_t'(\overline{\mathbf{y}}_{\mathbf{t}}) + E[\tilde{V}_{t+1}(\overline{\mathbf{x}}_{\mathbf{t}+1}^{\mathbf{p}}, \mathbf{d}_{\mathbf{t}+1}^{\mathbf{p}})] \right. \\ &- \sum_{n=1}^{M+N} \lambda_{nt}(\overline{y}_{nt} - \overline{x}_{nt}) - \sum_{m=0}^{M} \mu_{mt} \left(p_{mt} - \sum_{n=1}^{M+N} u_{mn}(\overline{y}_{nt} - \overline{x}_{nt}) \right) \\ &- \sum_{n=M+1}^{M+N} \gamma_{nt} (a_{nt} + \overline{x}_{nt} - \overline{y}_{nt}) \right\} \\ \text{s.t. } \sum_{n=1}^{M+N} u_{mn} \overline{y}_{nt} \leq \overline{x}_{m,t-\tau_m} - d_{m,t-\tau_m,t-1} \text{ for all } m = 0, ..., m \\ &\overline{x}_{0t} \leq \overline{y}_{0t} \leq p_t^0 + \overline{x}_{0t} \\ &\overline{y}_{nt} \leq a_{nt} \text{ for all } n = M+1, ..., M+N \end{split}$$

Step 4: Decompose the problem by location into M + N + 1 single variable dynamic programs.

For the PODs:

$$\psi_{nt}(\bar{x}_{nt}) = \min_{\{\bar{y}_{nt} \leq a_{nt}\}} \left\{ C'_{nt}(\bar{y}_{nt}) + (\mu^{U}_{nt} + \gamma_{nt} - \lambda_{nt})(\bar{y}_{nt} - \bar{x}_{nt}) - \gamma_{nt} a_{nt} + E[\psi_{n,t+1}(\bar{y}_{nt} - D_{nt})] \right\}$$

For the RSSs:

$$\psi_{mt}(\bar{x}_{mt}) = \min \left\{ C'_{mt}(\bar{y}_{mt}) + E[\Delta_{m,t+\tau_m}(\bar{x}_{mt} - D_{mt,t+\tau_m-1})] - \lambda_{mt}(\bar{y}_{mt} - \bar{x}_{mt}) - \mu_{mt}p_{mt} + E[\psi_{m,t+1}(\bar{y}_{mt} - D_{mt})] \right\}$$

For the PODs:

$$\psi_{nt}(\bar{x}_{nt}) = \min_{\{\bar{y}_{nt} \leq a_{nt}\}} \left\{ C'_{nt}(\bar{y}_{nt}) + (\mu^{U}_{nt} + \gamma_{nt} - \lambda_{nt})(\bar{y}_{nt} - \bar{x}_{nt}) - \gamma_{nt}a_{nt} + E[\psi_{n,t+1}(\bar{y}_{nt} - D_{nt})] \right\}$$

For the RSSs:

$$\psi_{mt}(\bar{x}_{mt}) = \min \left\{ C'_{mt}(\bar{y}_{mt}) + E[\Delta_{m,t+\tau_m}(\bar{x}_{mt} - D_{mt,t+\tau_m-1})] - \lambda_{mt}(\bar{y}_{mt} - \bar{x}_{mt}) - \mu_{mt}p_{mt} + E[\psi_{m,t+1}(\bar{y}_{mt} - D_{mt})] \right\}$$

For the SNS:

$$\psi_{0t}(\bar{x}_{0t}) = \min_{\{\bar{x}_{0t} \leq \bar{y}_{0t} \leq \bar{x}_{0t} + \rho_t^0\}} \left\{ C'_{0t}(\bar{y}_{0t}) + E[\Delta_{0,t+\tau_0}(\bar{x}_{0t} - D_{0t,t+\tau_0-1})] - \mu_{0t} \rho_{0t} + E[\psi_{0,t+1}(\bar{y}_{0t} - D_{0t})] \right\}$$

The RSS Penalty Function

$$\Delta_{mt}(\bar{x}'_{mt}|\lambda,\mu,\gamma) = \min \sum_{n \in \mathcal{P}} u_{mn} \Big[[(\mu_{nt}^{U} + \gamma_{nt} - \lambda_{nt}) \\ - (\mu_{n,t+1}^{U} + \gamma_{n,t+1} - \lambda_{n,t+1})] (\bar{y}_{nt} - \bar{y}_{nt}^{*}) \\ + C'_{nt}(\bar{y}_{nt}) - C'_{nt}(\bar{y}_{nt}^{*}) \Big]$$
such that
$$\sum_{n \in \mathcal{P}} u_{mn} \bar{y}_{nt} \leq \bar{x}'_{mt}$$

$$\bar{y}_{nt} \leq a_{nt} \text{ for } n \in \mathcal{P}$$

The SNS Penalty Function

$$\begin{array}{lcl} \Delta_{0t}(\bar{x}_{0t}'|\lambda,\mu,\gamma) & = & \min \sum_{m \in \mathcal{R}} \left(C_{mt}'(\bar{y}_{mt}) - C_{mt}'(\bar{y}_{mt}^*) \\ & - \lambda_{mt}(\bar{y}_{mt} - \bar{y}_{mt}^*) \\ & + E[\psi_{m,t+1}(\bar{y}_{mt} - D_{mt}|\lambda,\mu,\gamma) \\ & - \psi_{m,t+1}(\bar{y}_{mt}^* - D_{mt}|\lambda,\mu,\gamma)] \right) \\ & \text{such that} & \sum_{m \in \mathcal{R}} \bar{y}_{mt} \leq \bar{x}_{0t}'. \end{array}$$

Sample Computational Results

Sample Computational Results

Sample Computational Results

Inventory Allocation Numerical Results

	TCA		$_{ m LR}$		Order		Fair Share	
Simulation	WS LB	LR LB	WS LB	LR LB	WS LB	LR LB	WS LB	LR LB
1.11	1.431	1.634	1.423	1.625	1.575	1.798	2.465	2.814
1.12	1.094	8.931	1.135	9.263	1.155	9.433	2.047	16.715
1.13	1.074	2.208	1.089	2.240	1.089	2.240	1.122	2.307
1.14	1.130	2.609	1.166	2.693	3.865	8.928	1.839	4.248
1.15	1.035	1.992	1.040	2.001	1.050	2.020	1.052	2.025
1.21	1.344	1.045	1.343	1.044	1.408	1.095	3.069	2.386
1.22	3.393	1.374	3.602	1.459	3.385	1.370	19.519	7.903
1.24	1.137	1.973	1.171	2.033	3.787	6.572	2.067	3.587
2.11	1.140	4.413	1.160	4.491	1.261	4.880	1.499	5.802
2.12	1.557	2.194	1.553	2.188	1.699	2.395	2.386	3.362
2.13	1.550	1.406	1.558	1.413	1.680	1.524	2.784	2.526
2.21	1.536	3.379	1.578	3.472	1.723	3.791	2.936	6.459
2.22	2.072	1.527	2.136	1.575	2.291	1.689	7.032	5.185
2.23	3.793	1.202	4.051	1.284	4.033	1.278	16.598	5.259
2.31	1.176	2.263	1.181	2.273	1.265	2.436	1.353	2.604
2.32	1.195	2.902	1.195	2.900	1.247	3.028	1.332	3.232
2.33	1.243	2.003	1.240	1.998	1.280	2.061	1.410	2.271
3.11	1.145	1.619	1.138	1.609	1.149	1.625	1.249	1.766
3.12	1.324	1.361	1.312	1.348	1.336	1.372	1.876	1.928
3.13	1.590	2.021	1.581	2.010	1.770	2.250	2.599	3.304
3.14	1.978	2.303	1.935	2.253	2.248	2.617	3.673	4.276
3.23	3.964	1.135	4.059	1.162	4.227	1.210	26.509	7.588
3.24	5.151	1.374	5.039	1.344	5.493	1.465	31.156	8.311

Simulation Models

Goals: Help public health planners to

- Explore how capacities interact with and affect one another;
- 2. Understand the impact of uncertainty on their emergency response plans.

Models:

- 1. Dynamic POD Simulator (D-PODS)
- 2. Emergency Supply Chain Operations Evaluator (ESCOE)

D-PODS: The Dynamic POD Simulator

D-PODS: The Dynamic POD Simulator

D-PODS: The Dynamic POD Simulator

ESCOE: The Emergency Supply Chain Operations Evaluator

ESCOE Menu

In order to run the program, follow the steps as shown below. The program may not work if executed in the incorrect order.

Step 1	Simulation Start Time Period Length (Hours) Number of Periods Day Simulation End Time:	2 24 3	
Step 2	Construct the Network	Network	
Step 3	Describe the Lead Times	Lead Times	
Step 4	Describe the Inventory	Inventory	
Step 5	Describe the SNS	SNS	
Step 6	Describe the FDSs	FDSs	
Step 7	Describe the RSSs	RSSs	
Step 8	Describe the POD Types	POD Types	

ESCOE: The Emergency Supply Chain Operations Evaluator

