
NERSC Systems and Services

Available to CSGF Fellows

Jack Deslippe

HPC Consultant, NERSC

NERSC is the Primary Computing Center

for DOE Office of Science

NERSC computing for science
•5000 users, 650 projects

•From 48 states; 65% from universities

•Hundreds of users each day

•1500 publications per year

Systems designed for science
•1.3PF Petaflop Cray system, Hopper

•N7 Coming in Next Year
- Additional smaller clusters

2

NERSC Strategy: Science First

3

• Support computational science:
– Provide effective machines that

support fast algorithms

– Deploy with flexible systems
software to run a broad range of
applications

– Develop tools to make systems more
accessible

• NERSC future priorities are
driven by science:
- Increase application capability:
“usable Exascale”

- Simulation and data analysis of
simulated and experimental data

NERSC Systems

Large-Scale Computing Systems

Hopper (NERSC-6): Cray XE6

• 6,384 compute nodes, 153,216 cores

• 120 Tflop/s on applications; 1.3 Pflop/s peak

• N7 Coming in 2013

HPSS Archival Storage

• 40 PB capacity

• 4 Tape libraries

• 150 TB disk cache

NERSC Global

 Filesystem (NGF)

Uses IBM’s GPFS

• 1.5 PB capacity

• 10 GB/s of bandwidth

Clusters

 140 Tflops total

Carver

• IBM iDataplex cluster

PDSF (HEP/NP)

• ~1K core cluster

GenePool (JGI)

• ~5K core cluster

Analytics

Euclid

(512 GB shared
memory)

Dirac GPU
testbed (48
nodes)

4

Develop and Provide Science

Gateway Infrastructure

• Goals of Science Gateways
– Allow sharing of data on NGF and HPSS

– Make scientific computing easy

– Broaden impact/quality of results from
experiments and simulations

• NEWT – NERSC Web Toolkit/API
– Building blocks for science on the web

– newt.nersc.gov

• 30+ projects use the NGF -> web

5

Deep Sky: 450+ Supernovae

Gauge Connection: QCD

Daya Bay: Real-time

processing and monitoring

Earth Systems Grid Coherent X-Ray

Imaging Data Bank

20th Century Reanalysis

NEWT Apps

6

NERSC Machines

7 7

8

• To use HPC systems well, you need
to understand the basics and
conceptual design

– Otherwise, too many things are mysterious

• Programming for HPC systems is
hard

– To get your code to work properly

– To make it run efficiently (performance)

• You want to efficiently configure the
way your job runs

Why Do You Care About

Architecture?

9

NERSC-6

Grace “Hopper”

Cray XE6

1.3 PF Peak

Processor

 AMD MagnyCours

 2.1 GHz 12-core

 8.4 GFLOPs/core

 24 cores/node

 32-64 GB DDR3-1333 per node

System

 Gemini Interconnect (3D torus)

 6384 nodes

 153,216 total cores

I/O

 2PB disk space

 70GB/s peak I/O Bandwidth

Hopper Job Size Mix

Breakdown of Computing Hours by Job Size

100%

80%

60%

40%

20%

R
a

w
 H

o
u

rs

• Hopper is a 153,216 core system.

<1%

<10%
<43%
>43%

Preparing yourself for future hardware

trends

• CPU Clock rates are stalled (not getting faster)

– # nodes is about the same, but # cores is growing exponentially

– Think about parallelism from node level

– Consider hybrid programming to tackle intra-node parallelism so

you can focus on # of nodes rather than # of cores

• Memory capacity not growing as fast as FLOPs

– Memory per node is still growing, but per core is diminishing

– Threading (OpenMP) on node can help conserve memory

• Data locality becomes more essential for performance

– NUMA effects (memory affinity: must always be sure to access

data where it was first touched)

11

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

6MB L3

Cache

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound

Greyhound H
T

3

H
T

3

12

• 2 Multi-Chip Modules, 4 Opteron Dies

• 8 Channels of DDR3 Bandwidth to 8 DIMMs

• 24 (or 16) Computational Cores

– 64 KB L1 and 512 KB L2 caches for each core

– 6 MB of shared L3 cache on each die

• Dies are fully connected with HT3

XE6 Node Details: 24-core Magny Cours

To Interconnect

HT3

HT3

HT3

HT1 / HT3

Images Courtesy of Cray Inc.

• $HOME

• Where you land when you log in

• Tuned for small files

• $SCRATCH and $SCRATCH2

• Tuned for large streaming I/O

• $GSCRATCH

• Mounted across all NERSC file system

• $PROJECT

• Sharing between people/systems

• By request only

File Systems

• Use $SCRATCH for good IO performance
from a production compute job
• Write large chunks of data (MBs or more) at
a time from your code
• Use a parallel IO library (e.g. HDF5)
• Read/write to as few files as practical from
your code (try to avoid 1 file per MPI task)
• Use $HOME to compile unless you have too
many source files or intermediate (*.o) files
• Do not put more than a few 1,000s of files in
a single directory
• Save any and everything important to HPSS

IO Tips

3,200 compute cores

400 compute nodes

2 quad-core Intel Nehalem 2.67
GHz processors per node

8 processor cores per node

24 GB of memory per node (48
GB on 80 "fat" nodes)

2.5 GB / core for applications (5.5
GB / core on "fat" nodes)

InfiniBand 4X QDR

NERSC global /scratch
directory quota of 20 TB

Full Linux operating system

PGI, GNU, Intel compilers

15

Carver - IBM iDataPlex

Use Carver for jobs that use up to 512 cores, need a fast
CPU, need a standard Linux configuration, or need up to
48 GB of memory on a node.

16

NERSC 7

• NERSC will install a Cray “Cascade” system

in 2013

– First all new Cray design since Red Storm; developed

for the DARPA HPCS program

– Intel Processors with combined > 2PF peak

performance

– New “Aries” interconnect using a “dragonfly” topology

– 6.5PB storage using Cray Sonexion Lustre

appliances

• Good match for diverse NERSC user needs

– Both High-throughput and high-concurrency

workloads.

What services are available

to CSGF Fellows?

17

Getting enabled to run at NERSC

• To be able to run at NERSC you need to have an

account and an allocation.

• An account is a username and password

• Simply fill out the Computer Use Policy Form

(https://www.nersc.gov/users/accounts/user-

accounts/nersc-computer-use-policies-form/)

• Fax form to NERSC

• Receive email with link to initial password

• An allocation is a repository of CPU hours

• Good news, you already have an allocation

• All fellows have access to ~10k hours in m1266

19

• Log into the NERSC NIM web site at

https://nim.nersc.gov/ to manage your NERSC

accounts.

• In NIM you can check your daily allocation

balances, change your password, run reports,

update your contact information, change your login

shell, etc.

Accounting Web Interface (NIM)

NX Provides Faster Remote

Visualization

20

• NX Servers plus client

software

• Used worldwide for
–Scientific data visualization

–Remote debugging with GUIs

Getting Your Own Production

Allocation

• If you have exhausted your CSGF

allocation, apply for your own allocation

with DOE

• Research must be relevant to the mission

of the DOE

• https://www.nersc.gov/users/accounts/

• ASCR Program managers are very

supportive of CSGF program

https://www.nersc.gov/users/accounts/

Consulting Services are available

to you

22

• NERSC users submit online tickets or call

account support and consultants weekdays

between 8am-5pm Pacific Time

• 2 Account support staff

• 8 Consultants

– Diverse backgrounds from computer science to

science domain expertise

– Highly skilled: ½ of consultants have PhDs in science

domain, other ½ have master’s degrees

– Focus on quality responses

“One thing that I love about NERSC is that they think in a

way that is like a researcher, not as a system administrator.”

 –Guoping Zhang, Indiana State University

Account Support
•I forgot my password

•I’m a new user

•I’m out of time, can I have

more?

•I want to add a new user

to project

•How do I log in?

Common Questions to NERSC

Consultants

23

Running Jobs
•My job failed

• User failures

• System Failures

•This worked on my local cluster,

how can I run it on at NERSC?

•How do I submit my job?

•My application is running slowly.

•I’m new, help!

Programming
•Need help

porting code to

new machine

•My compilation

is failing

•I found a

compiler bug

Software
•How do I use this

package?

•My job is failing with

this software

•This software has a

bug

•I’d like to request

new software

Data and

Storage
•I need help backing

up data

•I need more disk

space

• How can I transfer

files to local system

or another facility

Network

and

Security

430

tickets

2,019

tickets

642

tickets

1,313

tickets

785 tickets

87 tickets

24

Qbox

LAMMPS

A linear-scaling density functional method

NWCHEM

Software Support: Chemistry &

Materials Applications

• More than 13.5 million lines of source code Compiled,

Optimized, and Tested

• “The 3.2 version of PWSCF built by the NERSC staff is very fast.

We appreciate the consulting staff's effort in providing optimized

software for the users.”

• Expert advice provided on using these applications

• Bridging gap between application science and computer science

• Changing parameter in VASP input sped up calculations by 2X

• Find all pgi compiler modules on the system

• Swap to an earlier version

• Other commands are “load”, “unload”, “avail”,

“switch”

NERSC Uses Modules to manage

Software

Tips for new users

• Challenge yourself to learn a little bit about HPC

architecture

• To use systems well you need to understand

conceptual design, otherwise too many

things are mysterious

• Attend workshops and online tutorials

• Ask consultants questions – we are here to

help.

• Profile your code with CrayPat, IPM, HPCToolkit

• Use parallel debuggers like DDT.

27

Hands On Activities!

1. Logging In

2. Compiling + Submitting a Parallel

Batch Job

3. Submitting a Hybrid Calculation

% ssh username@hopper.nersc.gov

Activity 1: Logging In

This will put you on one of the 8 Hopper login nodes

• These nodes have a full OS

• Edit files

• Compile programs

• Submit jobs to compute nodes

• DON’T use login nodes compute intensive applications

• Shared between all Hopper users

Basic examples are in:

/project/projectdirs/training/jul-

2012/compile

• Copy necessary files to your $HOME directory

as you don’t have write permissions in the

directory jul-2012

• If you haven’t run on a supercomputer before,

take some time to go over a few simple

examples

29

Examples

• First Example:
 % cp /project/projectdirs/training/jul-2012/compile/mpi_test.f90 ~

 % cp /project/projectdirs/training/jul-2012/compile/submit_static.scr ~

% ftn mpi_test.f90 –o mpi_test

% qsub submit_static.scr

Activity 2: Compile Hands On

In directory

 /project/projectdirs/training/jul-2012/compile

You just compiled and submitted a job to Hopper.

Now let’s take a closer look.

#PBS -l walltime=00:10:00

#PBS -l mppwidth=24

#PBS -q debug

#PBS –N my_job

cd $PBS_O_WORKDIR

aprun –n 24 ./mpi_test

Most Basic Batch Script

Directives specify how to

run your job

mpi_test runs in

parallel on compute nodes

UNIX commands run on a

service node (Full Linux)

A job script is a text file.

Create and edit with a text

editor, like vi or emacs.

• Portland Group

– Default module PrgEnv-pgi

• Cray

– PrgEnv-cray

– module swap PrgEnv-pgi PrgEnv-cray

• GNU

– PrgEnv-gnu

– module swap PrgEnv-pgi PrgEnv-gnu

• Pathscale

– PrgEnv-pathscale

– module swap PrgEnv-pgi PrgEnv-pathscale

Compilers on Hopper

• Use the Cray provided compiler wrappers

which transparently link your application to

MPI and other system libraries

• Fortran – use “ftn”

• C – use “cc”

• C++ -- use “CC”

% ftn parHelloWorld.F90

Compiler Wrappers

This is one of the most common questions we

answer at NERSC

• 6,384 nodes (153,216 cores)

– 6000 nodes have 32 GB; 384 have 64 GB

• Small, fast Linux OS

– Limited number of system calls and Linux

commands

– No shared objects by default

• Can support “.so” files with appropriate

environment variable settings

Hopper Compute Nodes

• Launch and manage parallel

applications on compute nodes

• Commands in batch script are

executed on MOM nodes

• No user (ssh) logins

MOM Nodes

This is a key difference between a vanilla

cluster and a Cray system

Batch Queues

Specify the max wall clock time

#PBS -l walltime=hh:mm:ss

Specify the number of cores

#PBS -l mppwidth=num_cores

Specify the queue name

#PBS -q queue_name

Import environment

#PBS –V

Charge job to account

#PBS –A account

Batch Options

Name of job

#PBS -N job_name

Name output and error files

#PBS -o output_file

#PBS -e error_file

Join output and error files

#PBS -j oe

Specifies email address for notifications

#PBS –M email address

Email notification (abort/begin/end/never)

#PBS -m [a|b|e|n]

More Batch Script Options

% qsub submit_static.scr

140979.sdb

Submit the job

Keep this jobid. It is often useful for debugging

Examine job output:

% cat my_job.o63731

• qstat –a [-u username]

– All jobs, in submit order

• qstat –f job_id

– Full report, many details

• showq

– All jobs, in priority order

• apstat, showstart, checkjob, xtnodestat

Monitoring Batch Jobs

• qsub job_script

• qdel job_id

• qhold job_id

• qrls job_id

• qalter new_options job_id

• qmove new_queue job_id

Manipulating Batch Jobs

• Packed

– User process on every core of each node

– One node might have unused cores

– Each process can safely access ~1.25 GB

• Unpacked

– Increase per-process available memory

– Allow multi-threaded processes

Packed vs Unpacked

#PBS -l mppwidth=1024

aprun –n 1024 ./a.out

• Requires 43 nodes

– 42 nodes with 24 processes

– 1 node with 16 processes

• 8 cores unused

– Could have specified mppwidth=1032

Packed

#PBS -l mppwidth=2048

aprun –n 1024 –N 12 ./a.out

• Requires 86 nodes

– 85 nodes with 12 processes

– 1 node with 4 processes

• 20 cores unused

– Could have specified mppwidth=2064

– Each process can safely access ~2.5 GB

Unpacked

But this isn’t the most optimal way to run …

Pure MPI Example

Core 0 Core 1

Core 2 Core 3

NUMA node 0

Core 4 Core 5

DDR3

DDR3

Core 0 Core 1

Core 2 Core 3

Core 4 Core 5

DDR3

DDR3

Core 0 Core 1

Core 2 Core 3

NUMA node 0

Core 4 Core 5

DDR3

DDR3

Core 0 Core 1

Core 2 Core 3

Core 4 Core 5

DDR3

DDR3

NUMA node 1 NUMA node 1

#PBS -l mppwidth=24

#PBS -l walltime=00:10:00

#PBS -N my_job

#PBS –q batch

#PBS -V

cd $PBS_O_WORKDIR

aprun -n 4 ./mpi_test

•Example: 4

MPI tasks

per node

•Default

placement is

not ideal

when fewer

than 24 cores

per node are

used.

Better Pure MPI Example

Core 0 Core 1

Core 2 Core 3

NUMA node 0

Core 4 Core 5

DDR3

DDR3

Core 0 Core 1

Core 2 Core 3

Core 4 Core 5

DDR3

DDR3

Core 0 Core 1

Core 2 Core 3

NUMA node 0

Core 4 Core 5

DDR3

DDR3

Core 0 Core 1

Core 2 Core 3

Core 4 Core 5

DDR3

DDR3

NUMA node 1 NUMA node 1

#PBS -l mppwidth=24

#PBS -l walltime=00:10:00

#PBS -N my_job

#PBS –q batch

#PBS -V

cd $PBS_O_WORKDIR

aprun -n 4 –S 1 ./mpi_test

•Example 4

MPI tasks

per node

•- S 1 flag

says put one

core on each

NUMA node

/project/projectdirs/training/jul-2012/mpi

jacobi_mpi.f90

jacobi.pbs

indata

Activity 3: Hands-On

program hybrid

call MPI_INIT (ierr)

call MPI_COMM_RANK (…)

call MPI_COMM_SIZE (…)

… some computation and MPI communication

call OMP_SET_NUM_THREADS(4)

!$OMP PARALLEL DO PRIVATE(i) SHARED(n)

do i=1,n

… computation

enddo

!$OMP END PARALLEL DO

… some computation and MPI communication

call MPI_FINALIZE (ierr)

end

A Hybrid Pseudo Code

• Compile as if “pure” OpenMP

– -mp=nonuma for PGI

– -mp for Pathscale

– -fopenmp for GNU

– no options for Cray

– Cray wrappers add MPI environment

#PBS -l mppwidth=48

setenv OMP_NUM_THREADS 6

aprun –n 8 -N 4 -d 6 ./a.out

XE6 Usage Overview

Option Description

-n Number of MPI tasks.

-N (Optional) Number of tasks per Hopper Node. Default is 24.

-d (Optional) Depth, or number of threads, per MPI task. Use in

addition to OMP_NUM_THREADS. Values can be 1-24; values

of 2-6 are recommended.

-S (Optional) Number of tasks per NUMA node. Values can be 1-6;

default 6

-sn (Optional) Number of NUMA nodes to use per Hopper

node. Values can be 1-4; default 4

-ss (Optional) Demands strict memory containment per NUMA

node; default is to allow remote NUMA node memory access.

-cc (Optional) Controls how tasks are bound to cores and NUMA

nodes. Recommendation for most codes is -cc cpu which

restricts each task to run on a specific core.

Useful aprun Options

• 24 MPI tasks with 6 OpenMP threads each

#PBS -l mppwidth=144

setenv OMP_NUM_THREADS 6

aprun –n 24 –N 4 -d 6 ./a.out

Hybrid MPI/OpenMP example on

6 nodes

Core 0 Core 1

Core 2 Core 3

NUMA node 0

Core 4 Core 5

DDR3

DDR3

Core 0 Core 1

Core 2 Core 3

Core 4 Core 5

DDR3

DDR3

Core 0 Core 1

Core 2 Core 3

NUMA node 0

Core 4 Core 5

DDR3

DDR3

Core 0 Core 1

Core 2 Core 3

Core 4 Core 5

DDR3

DDR3

NUMA node 1 NUMA node 1

 #PBS -l mppwidth=144 (so 6 nodes!)

• 1 MPI task per NUMA node with 6 threads each

 setenv OMP_NUM_THREADS 6

 aprun –n 24 –N 4 -d 6 ./a.out

• 2 MPI tasks per NUMA node with 3 threads each

 setenv OMP_NUM_THREADS 3

 aprun –n 48 –N 8 –d 3 ./a.out

• 3 MPI tasks per NUMA node with 2 threads each

 setenv OMP_NUM_THREADS 2

 aprun –n 72 –N 12 –d 2 ./a.out

Controlling NUMA Placement

/project/projectdirs/training/jul-2012/mixed

jacobi_mpiomp.f90

jacobi_mpiomp.pbs

indata

Activity 3: Hybrid Jobs

54

• www.nersc.gov

More Information

