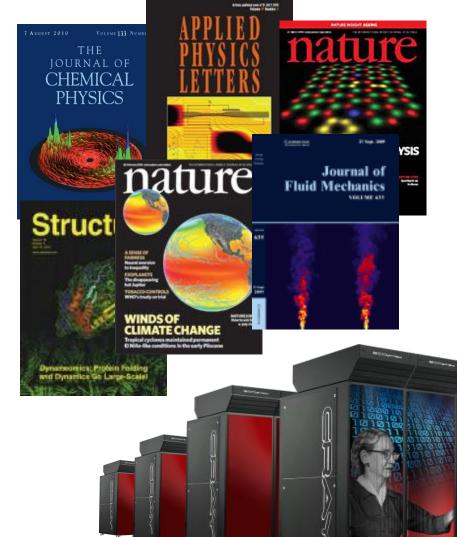


NERSC Systems and Services Available to CSGF Fellows

Jack Deslippe HPC Consultant, NERSC



DEPARTMENT OF

NERSC is the Primary Computing Center for DOE Office of Science

Science

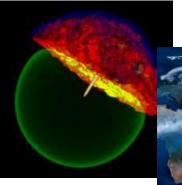
NERSC computing for science

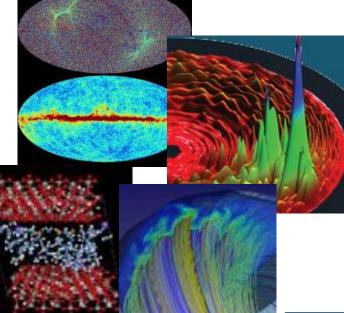
- •5000 users, 650 projects•From 48 states; 65% from universities•Hundreds of users each day
- 1500 publications per year

Systems designed for science

•1.3PF Petaflop Cray system, Hopper

- •N7 Coming in Next Year
 - Additional smaller clusters




NERSC Strategy: Science First

Support computational science:

- Provide effective machines that support fast algorithms
- Deploy with flexible systems software to run a broad range of applications
- Develop tools to make systems more accessible
- NERSC future priorities are driven by science:
 - Increase application capability:
 "usable Exascale"
 - Simulation and data analysis of simulated and experimental data

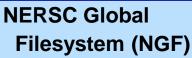
NERSC Systems

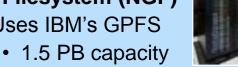
Large-Scale Computing Systems

Hopper (NERSC-6): Cray XE6

- 6,384 compute nodes, 153,216 cores
- 120 Tflop/s on applications; 1.3 Pflop/s peak
- N7 Coming in 2013

Clusters


140 Tflops total Carver


- IBM iDataplex cluster PDSF (HEP/NP)
 - ~1K core cluster

GenePool (JGI)

~5K core cluster

Uses IBM's GPFS

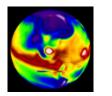
10 GB/s of bandwidth

HPSS Archival Storage

- 40 PB capacity
- 4 Tape libraries
- 150 TB disk cache

Analytics

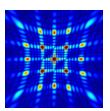
Euclid (512 GB shared memory) **Dirac** GPU testbed (48 nodes)

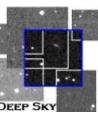

Develop and Provide Science Gateway Infrastructure

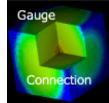
- Goals of Science Gateways
 - Allow sharing of data on NGF and HPSS
 - Make scientific computing easy
 - Broaden impact/quality of results from experiments and simulations
- NEWT NERSC Web Toolkit/API
 - Building blocks for science on the web
 - newt.nersc.gov

Office of

Science


• 30+ projects use the NGF -> web


20th Century Reanalysis


Earth Systems Grid

Coherent X-Ray Imaging Data Bank

Deep Sky: 450+ Supernovae

Gauge Connection: QCD

Daya Bay: Real-time processing and monitoring

NEWT Apps

Logged in as jdeslip I Logout																						
		Job	Cont	rol		Ab	out		VAS	SP M	anua	l (D							Ner	50		login
						Only	users	with a	VASP	licens	se can	run jot	os in N	OVA. (Check	your I	icense.	-				
											NERSC MOBILE beta											
																			Please login.			
Graphical										System Status:												
Select the type of potentials and functional you want to use. Type of potentials: Projector-Augmented Wave (PAW) Functional: GGA (PW91)										Н	ost	Status										
Click elements below to select available potentials. Remember to <i>select in the order they occur in your POSCAR file</i> .										hopper		up	Ø									
Selected potentials:										carver		up	Ð									
1 H H									Carver		up											
з Li	4 Be											5 B	° C	7 N	8 0	9 F	10 Ne		pdsf		up	
	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar					
	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	33 As	³⁴ Se	35 Br	36 Kr		genepool		up	
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe		euclid		up	
	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 r	78 Pt	79 Au	⁸⁰ Hg	81 TI	⁸² Pb	83 Bi	84 Po	85 At	86 Rn		euciiu		up	
87 Fr	⁸⁸ Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	nii Rg	112 Cn	Uut	Uuq	Uup	Uuh	Uus	118 Uuo		archive		up	
		57	59	50	60	R1	63	63	84	85	88	67	89	60	70	Г			NERSO NOTE	NOWCOMPUTING		
																			NERSC MOTD	NOW COMPUTING		

System Status

VASP Files

POSCAR

Atomic Positions

POTCAR Potentials

KPOINTS K-Point Mesh

INCAR **Calculation Options**

NERSC Settings

Computational Settings

Run this job

U.S. DEPARTMENT OF

Graphical Select the type of potentials

Selected potentials:

Office of

Science

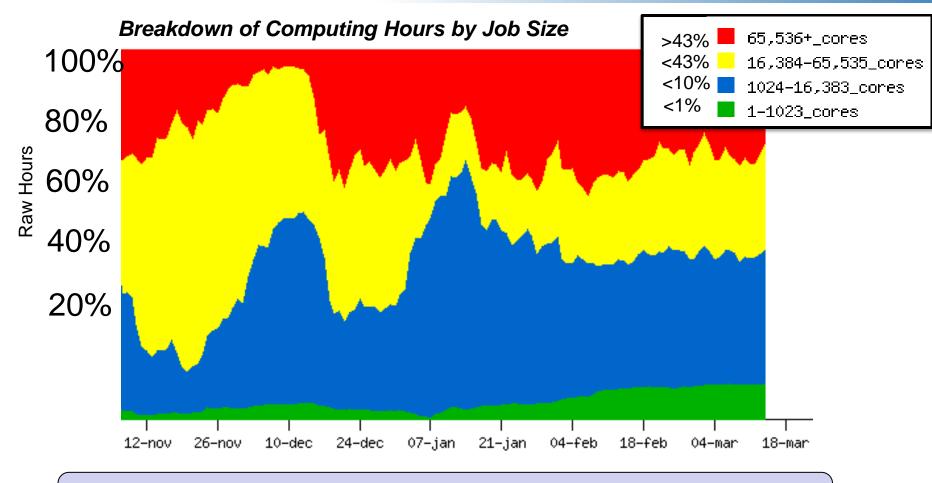
1 H																	2 He
з Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19	20	21	22	23	24	25	26	27	28	29	³⁰	31	32	33	³⁴	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	³⁸	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	71	72	73	74	75	76	77	⁷⁸	79	80	81	82	83	84	85	⁸⁶
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
⁸⁷	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo

6

NERSC Machines

Why Do You Care About Architecture?

- To use HPC systems well, you need to understand the basics and conceptual design
 - Otherwise, too many things are mysterious
- Programming for HPC systems is hard
 - To get your code to work properly
 - To make it run efficiently (performance)
- You want to efficiently configure the way your job runs


NERSC-6 Grace "Hopper"

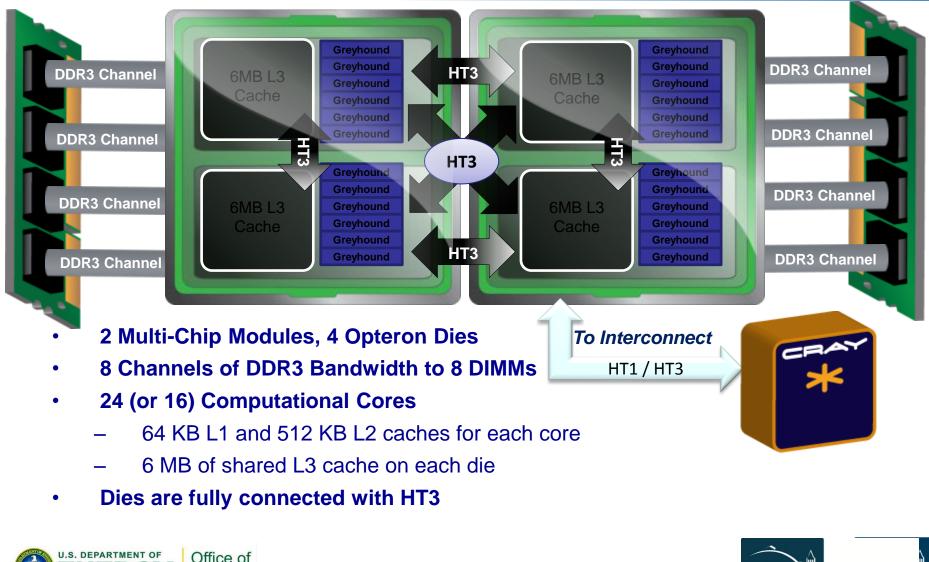
Cray XE6 1.3 PF Peak Processor AMD MagnyCours 2.1 GHz 12-core 8.4 GFLOPs/core 24 cores/node 32-64 GB DDR3-1333 per node System Gemini Interconnect (3D torus) 6384 nodes 153,216 total cores **I/O** 2PB disk space 70GB/s peak I/O Bandwidth

Hopper Job Size Mix

• Hopper is a 153,216 core system.

Preparing yourself for future hardware trends

- CPU Clock rates are stalled (not getting faster)
 - # nodes is about the same, but # cores is growing exponentially
 - Think about parallelism from node level
 - Consider hybrid programming to tackle intra-node parallelism so you can focus on # of nodes rather than # of cores
- Memory capacity not growing as fast as FLOPs
 - Memory per node is still growing, but per core is diminishing
 - Threading (OpenMP) on node can help conserve memory
- Data locality becomes more essential for performance
 - NUMA effects (memory affinity: must always be sure to access data where it was first touched)



FRG

Science

XE6 Node Details: 24-core Magny Cours

File Systems

• \$HOME

- Where you land when you log in
- Tuned for small files
- \$SCRATCH and \$SCRATCH2
 - Tuned for large streaming I/O
- \$GSCRATCH
 - Mounted across all NERSC file system
- \$PROJECT
 - Sharing between people/systems
 - By request only

IO Tips

- Use \$SCRATCH for good IO performance from a production compute job
- Write large chunks of data (MBs or more) at a time from your code
- Use a parallel IO library (e.g. HDF5)
- Read/write to as few files as practical from your code (try to avoid 1 file per MPI task)
- Use \$HOME to compile unless you have too many source files or intermediate (*.o) files
- Do not put more than a few 1,000s of files in a single directory
- Save any and everything important to HPSS

Carver - IBM iDataPlex

3,200 compute cores

400 compute nodes

- 2 quad-core Intel Nehalem 2.67 GHz processors per node
- 8 processor cores per node
- 24 GB of memory per node (48 GB on 80 "fat" nodes)
- 2.5 GB / core for applications (5.5 GB / core on "fat" nodes)

InfiniBand 4X QDR

NERSC global /scratch directory quota of 20 TB Full Linux operating system PGI, GNU, Intel compilers

Use Carver for jobs that use up to 512 cores, need a fast CPU, need a standard Linux configuration, or need up to 48 GB of memory on a node.

NERSC 7

- NERSC will install a Cray "Cascade" system in 2013
 - First all new Cray design since Red Storm; developed for the DARPA HPCS program
 - Intel Processors with combined > 2PF peak performance
 - New "Aries" interconnect using a "dragonfly" topology
 - 6.5PB storage using Cray Sonexion Lustre appliances
- Good match for diverse NERSC user needs
 - Both High-throughput and high-concurrency

What services are available to CSGF Fellows?

National Energy Research Scientific Computing Center

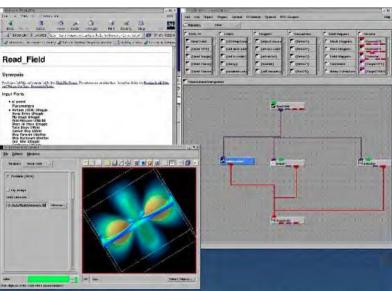
Getting enabled to run at NERSC

- To be able to run at NERSC you need to have an account and an allocation.
- An account is a username and password
 - Simply fill out the Computer Use Policy Form (https://www.nersc.gov/users/accounts/useraccounts/nersc-computer-use-policies-form/)
 - Fax form to NERSC
 - Receive email with link to initial password
- An allocation is a repository of CPU hours
 - Good news, you already have an allocation
 - All fellows have access to ~10k hours in m1266

- Log into the NERSC NIM web site at https://nim.nersc.gov/ to manage your NERSC accounts.
- In NIM you can check your daily allocation balances, change your password, run reports, update your contact information, change your login shell, etc. NERSC Information Management (NIM)

	NERSC Username: ragerber NIM Password: ·····
Need help with a <u>NIM</u> password?	Forgot your NIM password? Forgot your Username? Call NERSC Account Support at 1-800-66-NERSC or 510-486-8612.
Need help using NIM?	See the <u>NIM Users Manual</u> or call the NERSC Consultants at 1-800-66-NERSC or 510-486-8611 or send email to <u>consult@nersc.gov</u>
You must enable coo	kies and Javascript to use this interface. (See Browser Requirements.)

You must enable cookies and Javascript to use this interface. (See <u>Browser Requirement</u> Please DO NOT BOOKMARK this page. Bookmark http://nim.nersc.gov/ All connections are logged.



NX Provides Faster Remote Visualization

- NX Servers plus client software
- Used worldwide for
- -Scientific data visualization
- -Remote debugging with GUIs

BERKELEY

Getting Your Own Production Allocation

- If you have exhausted your CSGF allocation, apply for your own allocation with DOE
- Research must be relevant to the mission of the DOE
- <u>https://www.nersc.gov/users/accounts/</u>
- ASCR Program managers are very supportive of CSGF program

Consulting Services are available to you

- NERSC users submit online tickets or call account support and consultants weekdays between 8am-5pm Pacific Time
- 2 Account support staff
- 8 Consultants
 - Diverse backgrounds from computer science to science domain expertise
 - Highly skilled: ¹/₂ of consultants have PhDs in science domain, other ¹/₂ have master's degrees
 - Focus on quality responses

"One thing that I love about NERSC is that they think in a way that is like a researcher, not as a system administrator." –Guoping Zhang, Indiana State University

Common Questions to NERSC Consultants

tickets **Account Support**

•I forgot my password •I'm a new user •I'm out of time, can I have more? •I want to add a new user to project •How do I log in?

Network and Security

87 tickets

785 tickets Software

1,313

•How do I use this package? •My job is failing with this software •This software has a bug •I'd like to request new software On.

Science

Running Jobs

- •My job failed
- User failures System Failures •This worked on my local cluster, how can I run it on at NERSC?
- •How do I submit my job? •My application is running slowly.

Programming

porting code to tickets

430

•Need help

is failing •I found a

new machine

compiler bug

•My compilation

•I'm new, help!

642 Data and tickets Storage

•I need help backing up data

2,019

tickets

- •I need more disk space
- How can I transfer files to local system or another facility

Software Support: Chemistry & Materials Applications

CPMD consortium page

CPMI

More than 13.5 million lines of source code Compiled, Optimized, and Tested

ESPRESSO

b-initio

- "The 3.2 version of PWSCF built by the NERSC staff is very fast. We appreciate the consulting staff's effort in providing optimized software for the users."
- Expert advice provided on using these applications
 - Bridging gap between application science and computer science
 - Changing parameter in VASP input sped up calculations by 2X

www.gaussian.com THE OFFICIAL GAUSSIAN WEBSITE

NERSC Uses Modules to manage Software

Find all pgi compiler modules on the system

Swap to an earlier version

kantypas@login2:~> module swap pgi pgi/10.9.0

 Other commands are "load", "unload", "avail", "switch"

Tips for new users

- Challenge yourself to learn a little bit about HPC architecture
 - To use systems well you need to understand conceptual design, otherwise too many things are mysterious
- Attend workshops and online tutorials
- Ask consultants questions we are here to help.
- Profile your code with CrayPat, IPM, HPCToolkit
- Use parallel debuggers like DDT.

Hands On Activities!

1. Logging In

2. Compiling + Submitting a Parallel Batch Job

3. Submitting a Hybrid Calculation

Activity 1: Logging In

% ssh *username*@hopper.nersc.gov

This will put you on one of the 8 Hopper login nodes

- These nodes have a full OS
- Edit files
- Compile programs
- Submit jobs to *compute nodes*
- DON'T use login nodes compute intensive applications
- Shared between all Hopper users

Examples

Basic examples are in:

/project/projectdirs/training/jul-2012/compile

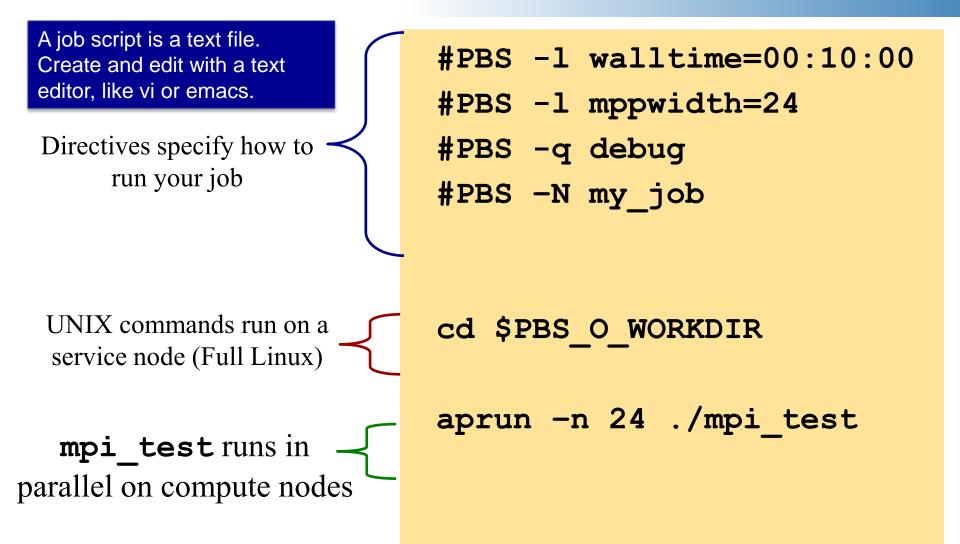
- Copy necessary files to your \$HOME directory as you don't have write permissions in the directory jul-2012
- If you haven't run on a supercomputer before, take some time to go over a few simple examples

In directory /project/projectdirs/training/jul-2012/compile

• First Example:

% cp /project/projectdirs/training/jul-2012/compile/mpi_test.f90 ~ % cp /project/projectdirs/training/jul-2012/compile/submit_static.scr ~

% ftn mpi_test.f90 -o mpi_test
% qsub submit static.scr


You just compiled and submitted a job to Hopper. Now let's take a closer look.

Most Basic Batch Script

Compilers on Hopper

- Portland Group
 - Default module PrgEnv-pgi
- Cray
 - PrgEnv-cray
 - module swap PrgEnv-pgi PrgEnv-cray
- GNU
 - PrgEnv-gnu
 - module swap PrgEnv-pgi PrgEnv-gnu
- Pathscale
 - PrgEnv-pathscale
 - module swap PrgEnv-pgi PrgEnv-pathscale

- Use the Cray provided compiler wrappers which transparently link your application to MPI and other system libraries
- Fortran use "ftn"
- C use "cc"
- C++ -- use "CC"

% ftn parHelloWorld.F90

This is one of the most common questions we answer at NERSC

- 6,384 nodes (153,216 cores)
 - 6000 nodes have 32 GB; 384 have 64 GB
- Small, fast Linux OS
 - Limited number of system calls and Linux commands
 - No shared objects by default
 - Can support ".so" files with appropriate environment variable settings

MOM Nodes

- Launch and manage parallel applications on compute nodes
- Commands in batch script are executed on MOM nodes
- No user (ssh) logins

This is a key difference between a vanilla cluster and a Cray system

Batch Queues

Submit Queue	Execution Queue ¹	Nodes	Processors	Max Wallclock
interactive	interactive	1-256	1-6,144	30 mins
debug	debug	1-512	1-12,288	30 mins
regular	reg_1hour	1-256	1-6,144	1 hr
	reg_short	1-683	1-16,392	6 hrs
	reg_small	1-683	1-16,392	36 hrs
	reg_med	684-2,048	16,393-49,152	36 hrs
	reg_big	2,049-4,096	49,153-98,304	36 hrs
	reg_xbig ⁴	4,097-6,100	98,305-146,400	12 hrs
low	low	1-683	1-16,392	12 hrs
premium	premium	1-2,048	1-49,152	12 hrs
xfer	xfer			12 hrs

Batch Options

Specify the max wall clock time **#PBS -I walltime=***hh:mm:ss* Specify the number of cores **#PBS -I mppwidth=***num_cores* Specify the queue name **#PBS -q** queue_name Import environment **#PBS –V** Charge job to account **#PBS** – A account

More Batch Script Options

Name of job **#PBS -N** job_name Name output and error files **#PBS -o output_file #PBS** -e error file Join output and error files **#PBS** -j oe Specifies email address for notifications **#PBS – M email address** Email notification (abort/begin/end/never) #PBS -m *[a|b|e|n]*

Submit the job

% qsub submit_static.scr 140979.sdb

Keep this jobid. It is often useful for debugging

Examine job output:

% cat my_job.063731

Monitoring Batch Jobs

- qstat –a [-u username]
 - All jobs, in submit order
- qstat –f job_id
 - Full report, many details
- showq
 - All jobs, in priority order
- apstat, showstart, checkjob, xtnodestat

Manipulating Batch Jobs

- qsub job_script
- qdel job_id
- qhold job_id
- qrls job_id
- qalter new_options job_id
- qmove new_queue job_id

Packed vs Unpacked

- Packed
 - User process on every core of each node
 - One node might have unused cores
 - Each process can safely access ~1.25 GB
- Unpacked
 - Increase per-process available memory
 - Allow multi-threaded processes

Packed

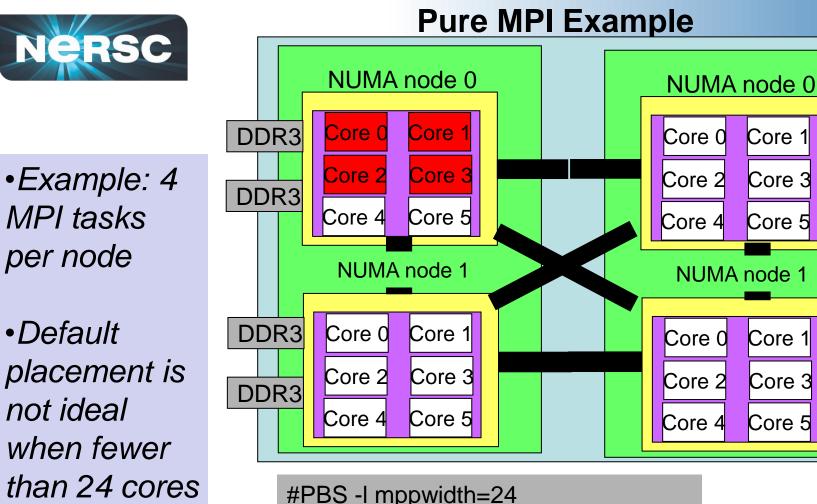
#PBS -1 mppwidth=1024 aprun -n 1024 ./a.out

Requires 43 nodes

- 42 nodes with 24 processes
- 1 node with 16 processes
 - 8 cores unused
- Could have specified mppwidth=1032

Unpacked

#PBS -1 mppwidth=2048
aprun -n 1024 -N 12 ./a.out


Requires 86 nodes

- 85 nodes with 12 processes
- 1 node with 4 processes
 - 20 cores unused
- Could have specified mppwidth=2064
- Each process can safely access ~2.5 GB

But this isn't the most optimal way to run ...

#PBS -I mppwidth=24
#PBS -I walltime=00:10:00
#PBS -N my_job
#PBS -q batch
#PBS -V

per node are

U.S. DEPARTMENT OF

Office of

Science

used.

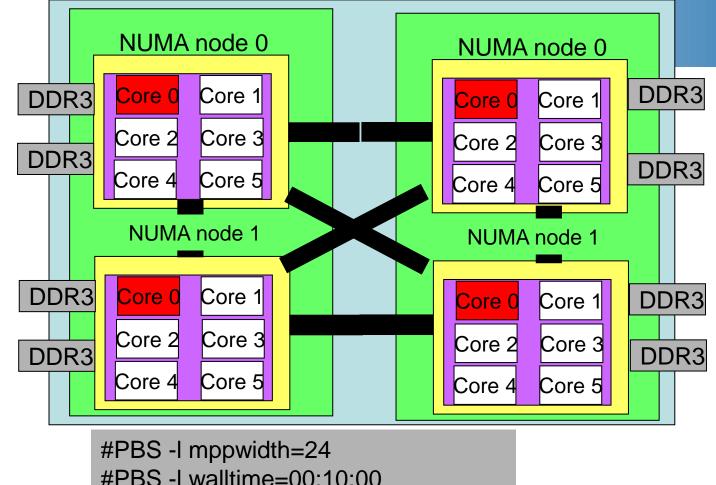
cd \$PBS_O_WORKDIR aprun -n 4 ./mpi_test

DDR3

DDR3

DDR3

DDR3



•Example 4 MPI tasks per node

•- S 1 flag says put one core on each NUMA node

Better Pure MPI Example

#PBS -I walltime=00:10:00 #PBS -N my_job #PBS -q batch #PBS -V

cd \$PBS_O_WORKDIR aprun -n 4 –S 1 ./mpi_test

Activity 3: Hands-On

/project/projectdirs/training/jul-2012/mpi

A Hybrid Pseudo Code

```
program hybrid
call MPI INIT (ierr)
call MPI COMM RANK ( ... )
call MPI COMM SIZE (...)
... some computation and MPI communication
call OMP SET NUM THREADS(4)
!$OMP PARALLEL DO PRIVATE(i) SHARED(n)
do i=1,n
... computation
enddo
!$OMP END PARALLEL DO
... some computation and MPI communication
call MPI FINALIZE (ierr)
end
```

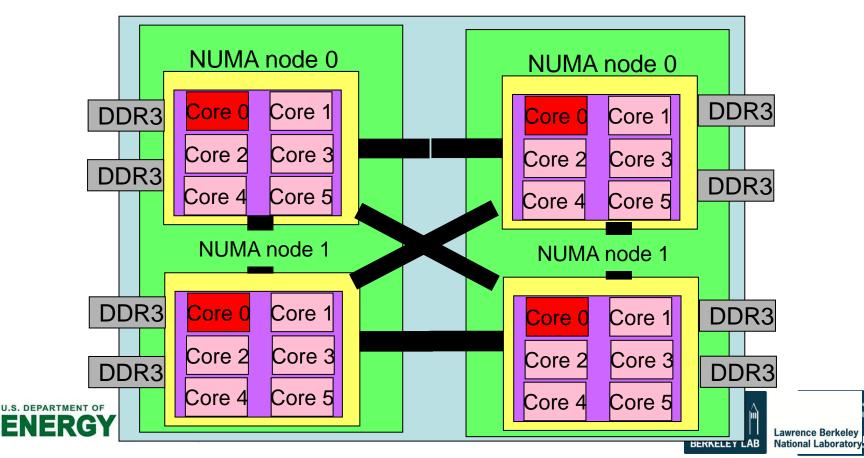

- Compile as if "pure" OpenMP
 - -mp=nonuma for PGI
 - -mp for Pathscale
 - fopenmp for GNU
 - no options for Cray
 - Cray wrappers add MPI environment

#PBS -1 mppwidth=48

setenv OMP_NUM_THREADS 6 aprun - n 8 - N 4 - d 6 ./a.out

Useful aprun Options

Option	Description
-n	Number of MPI tasks.
-N	(Optional) Number of tasks per Hopper Node. Default is 24.
-d	(Optional) Depth, or number of threads, per MPI task. Use <i>in addition to</i> OMP_NUM_THREADS . Values can be 1-24; values of 2-6 are recommended.
-S	(Optional) Number of tasks per NUMA node. Values can be 1-6; default 6
-sn	(Optional) Number of NUMA nodes to use per Hopper node. Values can be 1-4; default 4
-SS	(Optional) Demands strict memory containment per NUMA node; default is to allow remote NUMA node memory access.
-CC	(Optional) Controls how tasks are bound to cores and NUMA nodes. Recommendation for most codes is -cc cpu which restricts each task to run on a specific core.


Hybrid MPI/OpenMP example on 6 nodes

24 MPI tasks with 6 OpenMP threads each

```
#PBS -1 mppwidth=144
```

```
setenv OMP_NUM_THREADS 6
```

```
aprun -n 24 -N 4 -d 6 ./a.out
```


#PBS -1 mppwidth=144 (so 6 nodes!)

- 1 MPI task per NUMA node with 6 threads each setenv OMP_NUM_THREADS 6 aprun -n 24 -N 4 -d 6 ./a.out
- 2 MPI tasks per NUMA node with 3 threads each setenv OMP_NUM_THREADS 3 aprun -n 48 -N 8 -d 3 ./a.out
- 3 MPI tasks per NUMA node with 2 threads each setenv OMP_NUM_THREADS 2 aprun -n 72 -N 12 -d 2 ./a.out

Activity 3: Hybrid Jobs

/project/projectdirs/training/jul-2012/mixed

More Information

www.nersc.gov

