Vortex Roll Breakup in Turbulent Shear Flow

Curtis W. Hamman

Center for Turbulence Research Stanford University

DOE CSGF Conference 2012
Arlington, Virginia
July 27, 2012

Supported By

Motivation

- We want to predict complex turbulent flows

- More "complex" than "textbook" thin shear layers:

1. Extra body forces (buoyancy, rotation, ...) \rightarrow vortex rolls
2. Extra rates of strain (streamline curvature) \rightarrow breakup

Effects of Transverse Strain: 3D Boundary Layers

- Mean flow speed and direction change with wall distance
- Turbulence "less efficient" at extracting energy from mean

- Tends to reduce momentum and heat transfer rates
- Vortex generators used to prevent flow separation/stall

Effects of Vertical Forcing: Vortex Rolls

- Streamwise-aligned vortices ventilate near-wall turbulence
- Large, organized vortex rolls embedded in a turbulent flow

- Tends to enhance mixing and heat transfer rates
- May increase vibration, heat load, and fatigue

Rayleigh-Bénard Convection (No Shear)

Temperature contours along midplane

Rayleigh-Bénard Convection With Shear

Temperature contours along midplane

Vortex Roll Breakup in 3D TBLs

1. 3D TBLs tend to reduce mixing and heat transfer
2. Vortex rolls tend to enhance mixing and heat transfer

What if transverse strain and wall-normal body forces act together?

Example 3D TBLs with Vortex Rolls

Vortex rolls over the Caspian Sea (NASA, 2008)

Example 3D TBLs with Vortex Rolls

Vortex rolls over the Caspian Sea (NASA, 2008)

Example 3D TBLs with Vortex Rolls

Vortex rolls over the Caspian Sea (NASA, 2008)

Spanwise Spectra of Vortex Rolls (Centerline)

Vertical Transport and Mixing

- Heat transfer, mixing suppressed in non-equilibrium flow

Vertical Transport and Mixing

- Mean temp. and heat flux correlations readjust

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=0$

$11 / 12$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=10$

$11 / 12$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=20$

$11 / 12$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=26$

$11 / 12$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=32$

$11 / 12$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=38$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=44$

$11 / 12$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=52$

$11 / 12$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=56$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=60$

$11 / 12$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=70$

$11 / 12$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=80$

$11 / 12$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=100$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=130$

Contours of Temperature at $y^{+} \approx 30$ at $t / \tau=160$

Summary

1. 3D TBLs tend to reduce mixing and heat transfer
2. Vortex rolls tend to enhance mixing and heat transfer

What if transverse strain and wall-normal body forces act together?

- Impulsively applied transverse pressure gradients shown to breakup vortex rolls temporarily reducing vertical transport of momentum and heat flux from equilibrium values.

