

High Performance Computing Workshop July 20, 2011, Arlington, VA

The Role of Programming Systems on the Road to Exascale Computing

Jeffrey Vetter Oak Ridge National Lab and Georgia Tech <u>http://ft.ornl.gov</u>

DOE CSGF HPC Workshop

In a nutshell

- Exascale goals
 - Highlights from recent projections for exascale
- Challenges
 - Micro, macro power
 - Memory capacity and bandwidth
 - Parallelism
 - Programmability
- Programming systems play a crucial role
 - Survey of programming systems
 - Solutions are coming now
 - -Heterogeneity with GPUs
 - Programming models need a vigorous ecosystem
 - -Tools, autotuning, libraries

TOWARD EXASCALE

Process for identifying exascale applications and technology for DOE missions ensures broad community input

- Town Hall Meetings April-June 2007
- Scientific Grand Challenges Workshops Nov, 2008 – Oct, 2009
 - Climate Science (11/08),
 - High Energy Physics (12/08),
 - Nuclear Physics (1/09),
 - Fusion Energy (3/09),
 - Nuclear Energy (5/09),
 - Biology (8/09),
 - Material Science and Chemistry (8/09),
 - National Security (10/09)
 - Cross-cutting technologies (2/10)
- Exascale Steering Committee
 - "Denver" vendor NDA visits 8/2009
 - SC09 vendor feedback meetings
 - Extreme Architecture and Technology Workshop 12/2009
- International Exascale Software Project
 - Santa Fe, NM 4/2009; Paris, France 6/2009; Tsukuba, Japan 10/2009, etc.

Scientific Grand Challenge

ERGY

Scientific Grand Challenge

S IN CLIMATE CHANGE SCIENCE AN

FUNDAMENTAL SCIENCE

http://science.energy.gov/ascr/news-and-resources/workshops-and-conferences/grand-challenges/ **DOE CSGF HPC Workshop** http://www.exascale.org/iesp/Main_Page

Holistic View of HPC

Performance, Resilience, Power, Programmability

Applications

- Materials
- Climate
- Fusion
- National Security
- Combustion
- Nuclear Energy
- Cybersecurity
- Biology
- High Energy Physics
- Energy Storage
- Photovoltaics
- National Competitiveness
- <u>Usage Scenarios</u>
 - Ensembles
 - UQ
 - Visualization
 - Analytics

Programming Environment

- <u>Domain specific</u>
 - Libraries
 - Frameworks
 - Templates
 - Domain specific languages
 - Patterns
 - Autotuners
- Platform specific
 - Languages
 - Compilers
 - Interpreters/Scripting
 - Performance and Correctness Tools
 - Source code control

System Software

- Resource Allocation
- Scheduling
- Security
- Communication
- Synchronization
- Filesystems
- Instrumentation
- Virtualization

Architectures

- <u>Processors</u>
 - Multicore
 - Graphics Processors
- FPGA
- DSP
- <u>Memory and Storage</u>
 - Shared (cc, scratchpad)
 - Distributed
 - RAM
- Storage Class Memory
- Disk
- Archival
- Interconnects
 - Infiniband
 - IBM Torrent
 - Cray Gemini, Aires
 - BGL/P/Q
 - 1/10/100 GigE

DOE CSGF HPC Workshop

Where are we now? Contemporary Systems

Date	System	Location	Comp	Comm	Parall elism	Peak (PF)	Power (MW)
2010	Tianhe-1A	NSC in Tianjin	Intel + NVIDIA	Proprietary		4.7	4.0
2010	Nebulae	NSC In Shenzhen	Intel + NVIDIA	IB		2.9	2.6
2010	Tsubame 2	TiTech	Intel + NVIDIA	IB		2.4	1.4
2011	K Computer (612 cabinets)	Kobe	SPARC64 VIIIfx	Tofu		8.7	9.8
~2012	Cray 'Titan'	ORNL	AMD + NVIDIA	Gemini		20?	7?
~2012	BlueWaters	NCSA/UIUC	POWER7	IBM Hub		10?	10?
~2012	BlueGeneQ	ANL	SoC	IBM		10?	
~2012	BlueGeneQ	LLNL	SoC	IBM		20?	
	Others						

Tianhe-1A uses 7000+ NVIDIA GPUs

- Tianhe-1A uses
 - 7,168 NVIDIA Tesla M2050 GPUs
 - 14,336 Intel Westmeres
- Performance
 - 4.7 PF peak
 - 2.5 PF sustained on HPL
- 4.04 MW
 - If Tesla GPU's were not used in the system, the whole machine could have needed 12 megawatts of energy to run with the same performance, which is equivalent to 5000 homes
- Custom fat-tree interconnect
 - 2x bandwidth of Infiniband QDR

China Wrests Supercomputer Title From U.S.

By ASHLEE VANCE Published: October 28, 2010

A Chinese scientific research center has built the fastest supercomputer ever made, replacing the United States as maker of the swiftest machine, and giving China bragging rights as a technology superpower.

The Tianhe-1A computer in Tianjin, China, links thousands upon thousands of chips. national laboratory in Tennessee, as measured by the standard test used to gauge how well the systems handle mathematical calculations, said Jack Dongarra, a <u>University of Tennessee</u> computer scientist who maintains the official supercomputer rankings.

Although the official list of the top 500 fastest machines, which comes out every six months, is not due to be completed by Mr. Dongarra until next week, he said the

Chinese computer "blows away the existing No. 1 machine." He added, "We don't close the books until Nov. 1, but I would say it is unlikely we will see a system that is faster."

The computer, known as Tianhe-1A,

has 1.4 times the horsepower of the

current top computer, which is at a

Recent news - K

- #1 on TOP500
- 8.162 PF (93% of peak)
 - 3.1x TOP500 #2
 - 9.8 MW
- 672 racks (over 800 planned)
 - 68,544 processors, 1PB memory

SPARC64™ VIIIfx Chip Overview

- Architecture Features
 - 8 cores
 - Shared 5 MB L2\$
 - Embedded Memory Controller
 - 2 GHz

Fujitsu 45nm CMOS

- 22.7mm x 22.6mm
- 760M transistors
- 1271 signal pins

Performance (peak)

- 128GFlops
- 64GB/s memory throughput
- Power
 - 58W (TYP, 30°C)
 - Water Cooling Low leakage power and High reliability

12

All Rights Reserved, Copyright© FUJITSU LIMITED 2009

DOE CSGF HPC Workshop

SPARC64[™] VIIIfx

Source: Fujitsu

Building Blue Waters Blue Waters

Blue Waters will be the most powerful computer in the world for scientific research when it comes on line in 2011-2.

Quad-chip Module

4 Power7 chips Up to 1 TF (peak) 128 GB memory 512 GB/s Hub Chip 1.128 TB/s

IH Server Node 8 QCM's (256 cores) Up to 8 TF (peak) 1 TB memory 4 TB/s 8 Hub chips

9 TB/s Power supplies PCIe slots

Fully water cooled

IH Supernode 4 IH Server Nodes 1024 cores Up to 32 TF (peak) 41 TB memory 16 TB/s 32 Hub chips

36 TB/s

Blue Waters 3-Rack Building Block 8 IH Supernodes 256 TF (peak) 32 TB memory 128 TB/s memory 4 Storage systems (>500 TB) 10 Tape drive connections

Blue Waters ≥10 PF Peak ~1 PF sustained ≥300.000 cores ≥1 PB of memory >25 PB of disk storage 500 PB of archival storage ≥100 Gbps connectivity

Blue Waters is built from components that can also be used to build systems with a wide range of capabilities—from deskside to beyond Blue Waters.

Power7 Chip

8 cores, 32 threads

Up to 256 GF (peak)

· 45 nm technology

128 Gb/s memory bw

L1, L2, L3 cache (32 MB)

Extreme-scale Computing

31 March 2011

USC-DOE Materials Science Conference

EXASCALE EXPECTATIONS AND CHALLENGES

Notional Exascale Architecture Targets

System attributes	2002	2010	``2015 ″		``2018 ″	
System peak	10 Tera	2 Peta	200 Petaflop/sec		1 Exaflop/sec	
Power	~0.8 MW	6 MW	15 MW		20 MW	
System memory	0.006 PB	0.3 PB	5 PB		32-64 PB	
Node performance	0.024 TF	0.125 TF	0.5 TF	7 TF	1 TF	10 TF
Node memory BW		25 GB/s	0.1 TB/sec	1 TB/sec	0.4 TB/sec	4 TB/sec
Node concurrency	16	12	O(100)	O(1,000)	O(1,000)	O(10,000)
System size (nodes)	416	18,700	50,000	5,000	1,000,000	100,000
Total Node Interconnect BW		1.5 GB/s	150 GB/sec	1 TB/sec	250 GB/sec	2 TB/sec
MTTI		day	O(1 day)		0(1	day)

NVIDIA Echelon System Sketch

NVIDIA Echelon team: NVIDIA, ORNL, Micron, Cray, Georgia Tech, Stanford, UC-Berkeley, U Penn, Utah, Tennessee, Lockheed Martin

DOE CSGF HPC Workshop

Note the Uneven Impact on System Balance!

	2010	2018	Factor Change
System peak	2 Pf/s	1 Ef/s	500
Power	6 MW	20 MW	3
System Memory	0.3 PB	10 PB	33
Node Performance	0.125 Tf/s	10 Tf/s	80
Node Memory BW	25 GB/s	400 GB/s	16
Node Concurrency	12 cpus	1,000 cpus	83
Interconnect BW	1.5 GB/s	50 GB/s	33
System Size (nodes)	20 K nodes	1 M nodes	50
Total Concurrency	225 K	1 B	4,444
Storage	15 PB	300 PB	20
Input/Output bandwidth	0.2 TB/s	20 TB/s	100

DOE Exascale Initiative Roadmap, Architecture and Technology Workshop, San Diego, December, 2009.

Challenges to Exascale

Performance Growth

- 1) System power is the primary constraint
- 2) Memory bandwidth and capacity are not keeping pace
- 3) Concurrency (1000x today)
- 4) Processor architecture is an open question
- 5) Programming model heroic compilers will not hide this
- 6) Algorithms need to minimize data movement, not flops
- 7) I/O bandwidth unlikely to keep pace with machine speed
- 8) Reliability and resiliency will be critical at this scale
- 9) Bisection bandwidth limited by cost and energy

Unlike the last 20 years most of these (1-7) are equally important across scales, e.g., 100 10-PF machines

Both macro and micro energy trends drive all other factors

#1: POWER

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 DOE CSGF HPC Workshop

Facilities and Power ... Not just ORNL

A more consumer-relevant trend: Dark Silicon

CPU GPU SoC: Features & Block Diagram

O CPU

- Three 3.2 GHz PowerPC[®] cores
- Shared 1MB L2 cache
- Per Core:
 - Dual Thread Execution
 - 32K L1 I-cache, 32K L1 D-cache
 - 2-issue per cycle
 - Branch, Integer, Load/Store Units
 - VMX128 Units enhanced for games

O GPU

- 48 parallel unified shaders
- 24 billion shader instructions per second
- 4 billion pixels/sec pixel fill rate
- 500 million triangles/sec geometry rate
- High Speed IO interface to 10 MB EDRAM

Compatibility

XBOX 360.

 Functional and Performance equivalent to prior Xbox 360 GPU/CPU

5

FSB Latency and BW match prior FSB

AMD's Llano: A-Series APU

- Combines
 - 4 x86 cores
 - Array of Radeon cores
 - Multimedia accelerators
 - Dual channel DDR3
- 32nm
- Up to 29 GB/s memory bandwidth
- Up to 500 Gflops SP
- 45W TDP

A recent example...

GRAPHICS PROCESSORS

Many GPU-enabled systems blossoming worldwide.

FILED UNDER Desktops

Tokyo Institute of Technology announces SSD-packing. 2.39 petaflop supercomputer

By Joseph L. Flatley 🖾 posted Jun 23rd 2010 2:06PM

IBM has announced plans to start using SandForce SSDs in i 2.0. This next-gen supercomputer will reportedly operate at uses a new multilevel storage architecture consisting of DRA have thirty times the computing capacity of Tsubame 1.0 (d microprocessors and 4,224 NVIDIA Tesla M2050 GPUs), it predecessor's. If all goes according to plan, it should be in op (approx \$35.5 million).

Xiaowei Wang, Wei Ge, Xianfeng He, Feiguo Chen, Li Guo, Jinghai Li Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190

Mole-8.5 is the first GPGPU supercomputer (Rpeak of about 1100 Tflops) using NVIDIA Tesla C2050 in the world, which includes 372 nodes and is established in April 2010. It is the successor of the first supercomputer with 1.0 Petaflops peak performance in single precision in China, which was a hybrid system including four units integrating NVIDIA and AMD GPUs announced on April 20, 2009. Mole-8.5 was designed and established by Institute of Process Engineering (IPE), Chinese Academy of Sciences, one of the NVIDIA CCOEs. A designing philosophy utilizing the similarity between hardware, software and the problems to be solved is embodied, based on the multiscale method and discrete simulation approaches developed at IPE. The whole system is connected with Gigabit Ethernet and QDR Infiniband network. Mole-8.5 has some unique advantages over the HPC system of same performance based on CPU, for example the high performance/price ratio, the area occupied by it is only about 150 M². The linpack result of 320 nodes of Mole-8.5 is 2.073e+05 Gflops with a power consumption of about 480 KWatt, therefore the average power efficiency is 431 Mflop/s/Watt, manifesting an energy efficient supercomputer.

The New Hork Times Reprints

This copy is for your personal, noncommercial use only. You can order presentation-ready copies for distribution to your colleagues, clients or customers here or use the "Reprints" tool that appears next to any article. Visit www.nytreprints.com for samples and additional information. Order a reprint of this article now

October 28, 2010

China Wrests Supercomputer Title From U.S.

By ASHLEE VANCE

号 meaning River in Sky), which later will be installed in th "Super computing center"

ĞΕ

formance can reach 1.2 petaFLOPS and highest he-I" peak performance has exceeded the JUGENE VPACK score overrun NASA's Pleiades.

the Tokyo Institute of Technology is doing one better, work A Chinese scientific research center has built the fastest supercomputer ever made, replacing the United States as maker of the

swiftest machine, and giving China bragging rights as a technology superpower.

The computer, known as Tianhe-1A, has 1.4 times the horsepower of the current top computer, which is at a national laboratory in Tennessee, as measured by the standard test used to gauge how well the systems handle mathematical calculations, said Jack Dongarra, a University of Tennessee computer scientist who maintains the official supercomputer rankings.

Although the official list of the top 500 fastest machines, which comes out every six months, is not due to be completed by Mr. Dongarra until next week, he said the Chinese computer "blows away the existing No. 1 machine." He added, "We don't close the books until Nov. 1, but I would say it is unlikely we will see a system that is faster."

Officials from the Chinese research center, the National University of Defense Technology, are expected to reveal the computer's performance on Thursday at a conference in Beijing. The center says it is "under the dual supervision of the Ministry of National Defense and the Ministry of Education."

The race to build the factest supercomputer has become a source of national pride as these machines are valued for their ability.

d Third

lational University of Iso the World Third fastest neoretically at its peak

GPU Rationale – What's different now?

NVIDIA Fermi/GF100

- 3B transistors in 40nm
- Up to 512 CUDA Cores
 - New IEEE 754-2008 floating-point standard
 - FMA
 - 8× the peak double precision arithmetic performance over NVIDIA's last generation GPU
 - 32 cores per SM, 21k threads per chip
- 384b GDDR5, 6 GB capacity
 - ~120-144 GB/s memory BW
- C/M2070
 - 515 GigaFLOPS DP, 6GB
 - ECC Register files, L1/L2 caches, shared memory and DRAM

	Instruction Cache							
	Warp Scheduler				Warp Scheduler			
	Dispatch Unit				Dispatch Unit			
		+ +						
	Register File (4096 x 32-bit)							
		-			-			
	Core	Core		Core	Core	LD/ST LD/ST		
	Core	Core		Core	Core	LD/ST	5FU	
Dispatch Port	Core	Core		Core	Core	LD/ST LD/ST	SEU	
P Unit INT Unit	Core	Core		Core	Core	LD/ST LD/ST		
Result Queue	Core	Core		Core	Core	LD/ST LD/ST	SEU	
/	Core	Core		Core	Core	LD/ST LD/ST		
	Core	Core		Core	Core	LD/ST	CEII	
	Core	Core		Core	Core	LD/ST LD/ST		
			\approx	Intercon	nect Netwo	ork		
		64 KB Shared Memory / L1 Cache						
				Unifo	orm Cache			

Keeneland – Initial Delivery System

Early (Co-design) Success Stories

Computational Materials

- Quantum Monte Carlo
 - High-temperature superconductivity and other materials science
 - 2008 Gordon Bell Prize
- GPU acceleration speedup of 19x in main QMC Update routine
 - Single precision for CPU and GPU: target single-precision only cards
- Full parallel app is 5x faster, start to finish, on a GPU-enabled cluster on Tesla T10

GPU study: J.S. Meredith, G. Alvarez, T.A. Maier, T.C. Schulthess, J.S. Vetter, "Accuracy and Performance of Graphics Processors: A Quantum Monte Carlo Application Case Study", *Parallel Comput.*, 35(3):151-63, 2009.

Accuracy study: G. Alvarez, M.S. Summers, D.E. Maxwell, M. Eisenbach, J.S. Meredith, J. M. Larkin, J. Levesque, T. A. Maier, P.R.C. Kent, E.F. D'Azevedo, T.C. Schulthess, "New algorithm to enable 400+ TFlop/s sustained performance in simulations of disorder effects in high-Tc superconductors", SuperComputing, 2008. [Gordon WCL. Prize Cliner]

Combustion

S3D

- Massively parallel direct numerical solver (DNS) for the full compressible Navier-Stokes, total energy, species and mass continuity equations
- Coupled with detailed chemistry
- Scales to 225k cores on Jaguar
- Accelerated version of S3D's Getrates kernel in CUDA on Tesla T10
 - 31.4x SP speedup
 - 16.2x DP speedup

K. Spafford, J. Meredith, J. S. Vetter, J. Chen, R. Grout, and R. Sankaran. Accelerating S3D: A GPGPU Case Study. Proceedings of the Seventh International Workshop on Algorithms, Models, and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar 2009) Delft, The Netherlands.

Peptide folding on surfaces

- Peptide folding on a hydrophobic surface
 - www.chem.ucsb.edu/~sheagroup
- Surfaces can modulate the folding and aggregation pathways of proteins. Here, we investigate the folding of a small helical peptide in the presence of a hydrophobic surface of graphite. Simulations are performed using explicit solvent and a fully atomic representation of the peptide and the surface.
- Benefits of running on a GPU cluster:
 - Reduction in the the number of computing nodes needed: one GPU is at least faster than 8 CPUs in GPU-accelerated AMBER Molecular Dynamics.
 - The large simulations that we are currently running would be prohibitive using CPUs. The efficiency of the CPU parallelization becomes poorer with increasing number of CPUs.
 - It can also decrease consumption of memory and network bandwidth in simulations with large number of atoms.

Hadron Polarizability in Lattice QCD

Understanding the structure of subnuclear particles represents the main challenge for today's nuclear physics. Photons are used to probe this structure in experiments carried out at laboratories around the world. To interpret the results of these experiments we need to understand how electromagnetic field interacts with subnuclear particles. Theoretically, the structure of subnuclear particles is described by Quantum Chromodynamics (QCD). Lattice QCD is a 4-dimensional discretized version of this theory that can be solved numerically. The focus of our project is to understand how the electric field deforms neutrons and protons by computing the polarizability using lattice QCD techniques.

Why GPUs?

- Lattice QCD simulations require very large bandwidth to run efficiently. GPUs have 10-15 times larger memory bandwidth compared to CPUs.
- Lattice QCD simulations can be efficiently parallelized. ≻
 - Bulk of calculation spent on one kernel. \geq
 - The kernel requires only nearest neighbor information.
 - Cut the lattice into equal sub-lattices. Effectively use single instruction multiple-data (SIMD) paradigm.

Alexandru and F. X. Lee, [arXiv:0810.2833]

polarizability in lattice QCD.

Georgia

CPU GPU Performance Comparison 500 [Sd01400 300 쮤 200 CPU GPU 20 40 GPU Equivalent Count

Performance comparison between Keeneland's GPU cluster and Kraken's Cray XT-5 machine. The CPU core count is translated to GPU equivalent count by dividing the total number of CPUs by 22, which is the number of CPU cores equivalent to a single-GPU performance.

A. Alexandru. et. al, [arXiv:1103.5103]

Andrei Alexandru The George Washington University

WASHINGTON UNIVERSITY

VASHINGTON

THEUNIVERSITY

NESSEE

LAMMPS with GPUs

- Parallel Molecular Dynamics
 - http://lammps.sandia.gov
 - Classical Molecular Dynamics
 - Atomic models, Polymers, Metals, Bio-simulations, Coarse-grain (picture), Ellipsoids, etc.
 - Already good strong and weak scaling on CPUs via MPI

- Better performance on fewer nodes
 => larger problems faster
- Neighbor, non-bonded force, and longrange GPU acceleration
- Allows for CPU/GPU concurrency
- Implementation and benchmarks by W.
 Michael Brown, NCCS, ORNL

Holistic View of HPC

Performance, Resilience, Power, Programmability

Applications	Programming Environment	System Software	Architectures
 Materials Climate Fusion National Security Combustion Nuclear Energy Cybersecurity Biology High Energy Physics Energy Storage Photovoltaics National Competitiveness Usage Scenarios Ensembles UQ Visualization Analytics 	 <u>Domain specific</u> Libraries Frameworks Templates Domain specific languages Patterns Autotuners cat Platform specific Languages Compilers Interpreters/Scripting Performance and Correctness Tools Source code control 	 Resource Allocation Scheduling Security Communication Synchronization Filesystems Instrumentation Virtualization 	 <u>Processors</u> Multicore Graphics Processors FPGA DSP <u>Memory and Storage</u> Shared (cc, scratchpad) Distributed RAM Storage Class Memory Disk Archival <u>Interconnects</u> Infiniband IBM Torrent Cray Gemini, Aires BGL/P/Q 1/10/100 GigE

Analytics

DOE CSGF HPC Workshop

.....

State of Programming Systems

- Contemporary Programming Systems USED IN HPC
 - C, C++, FORTRANXX
 - MPI, OpenMP
 - CUDA, OpenCL
 - Python, UPC, CAF
 - Combinations of these: MPI+OpenMP+CUDA
- The future is completely open:
 - Global Arrays, Charm++, ParalleX, StarSS, Cilk, TBB, CnC, parallel Matlabs, Star-P, C++AMP, Map-Reduce, Titanium, Sequoia, Chapel, etc
- Libraries and Frameworks provide functional consistency
 - BLAS, LAPACK, PetSC, Trilinos, OpenMM, FFTW, ...

PGAS: What's in a Name?

		memory model	programming model	execution model	data structures	communication	/
	MPI	MPI distributed co memory (of		executables) in practice)	manually fragmented	APIs	
	OpenMP	shared memory	global-view parallelism	shared memory multithreaded	shared memory arrays	N/A	
PGAS Languages	CAF				co-arrays	co-array refs	
	UPC	PGAS	Single Program, I (SPMI	(SPMD)		implicit	
	Titanium				class-based arrays/ distributed pointers	method-based	
	Chapel	PGAS	global-view parallelism	distributed memory multithreaded	global-view distributed arrays	implicit	

DE 3GF

Source: Brad Chamberlain, Cray
Is it possible to write one application that can run efficiently on all these architectures?

Source: DARPA HPCS Program, 2005

Questions for Exascale Programming Systems

Q: How should we expose multiple levels of parallelism?

Q: How should communication occur?

Q: Should thread-data locality/affinity be exposed to the user, or hidden managed by the runtime?

Q: How should we best enabled domain specific libraries, frameworks, and languages?

Q: How do we maintain legacy applications and software?

A concrete example...

THE RECENT QUEST ON PROGRAMMING GPUS

DOE CSGF HPC Workshop

A Typical GPU Software Environment

- Integrated with NSF TeraGrid/XD
 - Including TG and NICS software stack
- Programming environments
 - CUDA
 - OpenCL
 - Compilers — GPU-enabled
 - Scalable debuggers
 - Performance tools
 - Libraries

- Tools and programming options are changing rapidly
 - HMPP, PGI, LLVM, Polaris, R-stream,
- Additional software activities
 - Performance and correctness tools
 - Scientific libraries
 - Virtualization

OpenCL Working Group

- Diverse industry participation
 - Processor vendors, system OEMs, middleware vendors, application developers
- Many industry-leading experts involved in OpenCL's design
 - A healthy diversity of industry perspectives
- Apple initially proposed and is very active in the working group
 - Serving as specification editor
- Here are some of the other companies in the OpenCL working group

OpenCL Platform Model (Section 3.1)

- One <u>Host</u> + one or more <u>Compute Devices</u>
 - Each Compute Device is composed of one or more Compute Units
 - Each Compute Unit is further divided into one or more <u>Processing</u> <u>Elements</u>

Kernel Execution

- Total number of work-items = $G_x \times G_y$
- Size of each work-group = $S_x \times S_y$
- Global ID can be computed from work-group ID and loca

OpenCL Memory Model

- Shared memory model
 - Relaxed consistency
- Multiple distinct address spaces
 - Address spaces can be collapsed depending on the device's memory subsystem
- Address spaces
 - Private private to a workitem
 - Local local to a work-group
 - Global accessible by all work-items in all workgroups
 - Constant read only global space
- Implementations map this hierarchy
 - To available physical memories

Scalable HeterOgeneous Computing (SHOC) Benchmark Suite

- Benchmark suite with a focus on scientific computing workloads, including common kernels like SGEMM, FFT, Stencils
- Parallelized with MPI, with support for multi-GPU and cluster scale comparisons
- Implemented in CUDA and OpenCL for a 1:1 performance comparison
- Includes stability tests
- Performance portability

• Level 0

- BusSpeedDownload: measures bandwidth of transferring data across the PCIe bus to a device.
- BusSpeedReadback: measures bandwidth of reading detaogak from a detogo
- DeviceMemory: measures bandwidth of memory as as as to variance, bes of device memory including global, local, and image memory is
- KernelCompile: measures compile time for several Oper Cornels, which range in complexity
- PeakFlops: measures maximum achieve ble floating party performance using a combination of auto-generated and have coded kernels.
- QueueDelay: measures in or rhead of regime OpenCL command queue.
- Level 1
 - FFT: for ve and reverse 10 T
 - MD. petation of the behavior of t
 - Reduction: which operation on an array of single precision floating point values.
 - SGEM is sagle-precision matrix-matrix multiply.
 - Son scan (also known as parallel prefix sum) on an array of single precision floating to a values.
 - \mathbf{Sort} : sorts an array of key-value pairs using a radix sort algorithm
 - Stencil2D: a 9-point stencil operation applied to a 2D data set. In the MPI version, data is distributed across MPI processes organized in a 2D Cartesian topology, with periodic halo exchanges.
 - Triad: STREAM Triad operations, implemented in OpenCL.

Software available at <u>http://bit.ly/shocmarx</u>

A. Danalis, G. Marin, C. McCurdy, J. Meredith, P.C. Roth, K. Spafford, V. Tipparaju, and J.S. Vetter, "The Scalable HeterOgeneous Computing (SHOC) Benchmark Suite," in Third Workshop on General-Purpose Computation on Graphics Processors (GPGPU 2010)[•].

Single Precision MD 60 54.87 49.89 50 40 **GB/s** 30 27.76 21.6 20 10 1.42 0 ATI Radeon HD5870 NV GTX580 NV GTX480 Tesla M2070 NV Ion

Single Precision FFT

Example: Sparse Matrix Vector Multiplication (SpMV)

- Motivation
 - Extremely common scientific kernel
 - Bandwidth bound, and much harder to get performance than GEMM
- Basic design
 - 3 Algorithms, padded & unpadded data
 - CSR and ELLPACKR data formats
 - Supports random matrices or matrix market format
 - Example: Gould, Hu, & Scott: expanded system-3D PDE.

SpMV Performance

DOE CSGF HPC Workshop

Comparing CUDA and OpenCL

Single precision, Tesla C1060 GPU

Comparing NVIDIA OpenCL implementation from 2.3 and 3.0 GPU Computing SDK

Questions for Exascale Programming Systems Answers for current GPU systems

Q: How should we expose multiple levels of parallelism? Explicit: MPI+threads+OpenCL/CUDA

Q: How should communication occur? Mostly Explicit: MPI+DMA+SharedMem+Scratchpad

Q: Should thread-data locality/affinity be exposed to the user, or hidden managed by the runtime? Explicit

Q: How should we best enabled domain specific libraries, frameworks, and languages?

Q: How do we maintain legacy applications and software? Partially

?

MOVING BEYOND *EXPLICIT* PROGRAMMING OF GPUS

OpenMPC (OpenMP extended for CUDA)

- OpenMPC = OpenMP + a new set of directives and environment variables for CUDA
- OpenMPC provides
 - A high level abstraction of the CUDA programming model (Programmability)
 - An easy tuning environment to generate CUDA programs in many optimization variants (Tunability)

Seyong Lee and Rudolf Eigenmann, OpenMPC: Extended OpenMP Programming and Tuning for GPUs, SC10: Proceedings of the 2010 ACM/IEEE conference on Supercomputing (Best Student Paper Award), November 2010.

Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann, OpenMP to GPGPU: A Compiler Framework for Automatic Translation and Optimization, Symposium on Principles and Practice of Parallel Programming (PPoPP09), February 2009

OpenMPC Approach

- Use OpenMP for easier programming on CUDA-based GPGPUs.
- Provide various compile-time optimizations for performance.
- Extend OpenMP to allow fine-grained control of CUDA-related parameters and optimizations.

OpenMPC: Directive Extension and Environment Variables

• OpenMPC Directive Format

#pragma cuda gpurun [clause [,] clause]...]
#pragma cuda cpurun [clause [,] clause]...]
#pragma cuda nogpurun
#pragma cuda ainfo procname(pname)
kernelid(kID)

- OpenMPC Environment Variables
 - Control the program-level behavior of various optimizations or execution configurations for an output CUDA program.

OpenMPC Compilation System

Overall Compilation Flow

```
#pragma omp parallel shared(firstcol, lastcol, x, z)
private(j) reduction(+: norm_temp11, norm_temp12)
#pragma cuda ainfo kernelid(1) procname(main)
Inproper #pragma cuda gpurun noc2gmemtr(x, z)
#pragma cuda gpurun nocudamalloc(x, z)
#pragma cuda gpurun nocudafree(firstcol, lastcol, x, z)
#pragma cuda gpurun nog2cmemtr(firstcol, lastcol, x, z)
#pragma cuda gpurun sharedRO(firstcol, lastcol)
#pragma cuda gpurun texture(z)
From {
```

For O20

}

```
for (j=1; j<=((lastcol-firstcol)+1); j ++ ) {
    norm_temp11=(norm_temp11+(x[j]*z[j]));
    norm_temp12=(norm_temp12+(z[j]*z[j]));</pre>
```


ctive

OpenMPC Tuning Framework

Tuning Engine

Performance of OpenMP Programs on CUDA

Speedups are over serial on the CPU, when the largest available input data were

Experimental Platform: CPU: two Dual-Core AMD Opteron at 3 GHz 57 GPU: NVIDIA Quadro FX 5600 with 16 multiprocessors at 1.35GHz

Overall Tuning Performance

• Performance Summary

Translator Input	Perform	ance Improve All-Opt Versic	ement over ons	Relative Performance over Manual Versions			
	MIN	MAX	AVG	MIN	MAX	AVG	
Orig. OpenMP	1	4.23	1.19	0.02 (0.03)	1.92 (1.92)	0.5 (0.58)	
Mod. OpenMP	1	7.71	1.24	0.02 (0.33)	2.68 (2.68)	0.75 (0.92)	

In A(B) format, B refers the performance when the results of LUD are excluded.

- Optimization Search Space Reduction
 - 98.7% on average for program-level tuning

#2: MEMORY BANDWIDTH AND CAPACITY

Blackcomb: Hardware-Software Co-design for Non-Volatile Memory in Exascale Systems

Jeffrey Vetter, ORNL Robert Schreiber, HP Labs Trevor Mudge, U Michigan Yuan Xie, PSU

company company combined	A	comparison	of various	memory	technol	ogies
--------------------------	---	------------	------------	--------	---------	-------

				<u>. – – – – – .</u>		
	SRAM	DRAM	NAND Flash	PC-RAM	STT- RAM	R-RAM
Data Retention	N	N	Y	Y	Y	Y
Memory Cell Factor (F ²)	50-120	6-10	2-5	6-12	4-20	<1
Read Time (ns)	1	30	50	20-50	2-20	<50
Write / Erase Time (ns)	1	50	106-105	50-120	2-20	<100
Number of Rewrites	1016	1016	105	1010	1015	1015
Power Read/Write	Low	Low	High	Low	Low	Low
Power (Other than R/W)	Leakage Current	Refresh Power	None	None	None	None

Impact and Champions

Reliance on NVM addresses device scalability, energy efficiency and reliability concerns associated with DRAM

- More memory NVM scalability and density permits significantly more memory/core than projected by current Exascale estimates.
- Less power NVMs require zero stand-by power.
- More reliable alleviates increasing DRAM soft-error rate problem.
- Node architecture with persistent storage near processing elements enables new computation paradigms
 - Low-cost checkpoints, easing checkpoint frequency concerns.
 - Inter-process data sharing, easing in-situ analysis (UQ, Visualization)

Novel Ideas

- New resilience-aware designs for non-volatile memory applications
 - Mechanical-disk-based data-stores are completely replaced with energy-efficient non-volatile memories (NVM).
 - Most levels of the hierarchy, including DRAM and last levels of SRAM cache, are completely eliminated.
- New energy-aware systems/applications for nonvolatile memories (nanostores)
 - Compute capacity, comprised of balanced low-power simple cores, is co-located with the data store.

Milestones

- Identify and evaluate the most promising non-volatile memory (NVM) device technologies.
- Explore assembly of NVM technologies into a storage and memory stack
- Build the abstractions and interfaces that allow software to exploit NVM to its best advantage
- Propose an exascale HPC system architecture that builds on our new memory architecture
- Characterize key DOE applications and investigate how they can benefit from these new technologies

Summary

- Exascale goals
 - Highlights from recent projections for exascale
- Challenges
 - Micro, macro power
 - Memory capacity and bandwidth
 - Parallelism
 - Programmability
- Programming systems play a critical role
 - Survey of programming systems
 - Solutions are coming now — Heterogeneity with GPUs
 - Programming models need a vigorous ecosystem
 - Tools, autotuning, libraries

Scientific Grand Challenges

CROSSCUTTING TECHNOLOGIES FOR COMPUTING AT THE EXASCALE

February 2-4, 2010 • Washington, D.C.

U.S. DEPARTMENT O

ENERG

DOE CSGF HPC Workshop

http://science.energy.gov/ascr/news-andresources/workshops-and-conferences/grand-challenges/

BONUS SLIDES

Critical Concern : Memory Capacity

	2010	2018	Factor Change
System peak	2 Pf/s	1 Ef/s	500
Power	6 MW	20 MW	3
System Memory	0.3 PB	10 PB	33
Node Performance	0.125 Tf/s	10 Tf/s	80
Node Memory BW	25 GB/s	400 GB/s	16
Node Concurrency	12 CPUs	1,000 CPUs	83
Interconnect BW	1.5 GB/s	50 GB/s	33
System Size (nodes)	20 K nodes	1 M nodes	50
Total Concurrency	225 K	1 B	4,444
Storage	15 PB	300 PB	20
Input/Output bandwidth	0.2 TB/s	20 TB/s	100

 Table 1: Potential Exascale Computer Design for 2018 and its relationship to current HPC designs.

- Small memory capacity has profound impact on other features
 DOE CSGF HPC Workshop
- Feeding the core
- Poor efficiencies
- Small messages, I/O

Memory Performance

Source: DARPA Exascale Computing Study

Memory Capacity

New Technologies Offer Promise

Device Type	HDD	DRAM	NAND Flash	FRAM	MRAM	STTRAM	PCRAM	NRAM
Maturity	Product	Product	Product	Product	Product	Prototype	Product	Prototype
Present Density	400Gb/in ^{2 [7]}	8Gb/chip ^[9]	64Gb/chip [10]	128Mb/chip	32Mb/chip	2Mb/chip	512Mb/chip	NA
Cell Size (SLC)	(2/3)F ²	6F ²	4F ²	6F ²	20F ²	4F ²	5F ²	5F ²
MLC Capability	No	No	4bits/cell	No	2bits/cell	4bits/cell	4bits/cell	No
Program Energy/bit	NA	2pJ	10nJ	2pJ	120pJ	0.02pJ	100pJ	10pJ ^[11]
Access Time (W/R)	9.5/8.5ms ^[8]	10/10ns	200/25us	50/75ns	12/12ns	10/10ns	100/20ns	10/10ns ^[11]
Endurance/Retention	NA	10 ¹⁶ /64ms	10 ⁵ /10yr	10 ¹⁵ /10yr	10 ¹⁶ /10yr	10 ¹⁶ /10yr	10 ⁵ /10yr	10 ¹⁶ /10yr
Device Type	RRAM	CBRAM	SEM	Polymer	Molecular	Racetrack	Holographic	Probe
Device Type Maturity	RRAM Research	CBRAM Prototype	SEM Prototype	Polymer Research	Molecular Research	Racetrack Research	Holographic Product	Probe Prototype
Device Type Maturity Present Density	RRAM Research 64Kb/chip	CBRAM Prototype 2Mb/chip	SEM Prototype 128Mb/chip	Polymer Research 128b/chip	Molecular Research 160Kb/chip	Racetrack Research NA	Holographic Product 515Gb/in ²	Probe Prototype 1Tb/in ²
Device Type Maturity Present Density Cell Size	RRAM Research 64Kb/chip 6F ²	CBRAM Prototype 2Mb/chip 6F ²	SEM Prototype 128Mb/chip 4F ²	Polymer Research 128b/chip 6F ²	Molecular Research 160Kb/chip 6F ²	Racetrack Research NA N/A	Holographic Product 515Gb/in ² N/A	Probe Prototype 1Tb/in ² N/A
Device Type Maturity Present Density Cell Size MLC Capability	RRAM Research 64Kb/chip 6F ² 2bits/cell	CBRAM Prototype 2Mb/chip 6F ² 2bits/cell	SEM Prototype 128Mb/chip 4F ² No	Polymer Research 128b/chip 6F ² 2bits/cell	Molecular Research 160Kb/chip 6F ² No	Racetrack Research NA N/A 12bits/cell	Holographic Product 515Gb/in ² N/A N/A	Probe Prototype 1Tb/in ² N/A N/A
Device Type Maturity Present Density Cell Size MLC Capability Program Energy/bit	RRAM Research 64Kb/chip 6F ² 2bits/cell 2pJ	CBRAM Prototype 2Mb/chip 6F ² 2bits/cell 2pJ	SEM Prototype 128Mb/chip 4F ² No 13pJ	Polymer Research 128b/chip 6F ² 2bits/cell NA	Molecular Research 160Kb/chip 6F ² No NA	Racetrack Research NA N/A 12bits/cell 2pJ	Holographic Product 515Gb/in ² N/A N/A N/A	Probe Prototype 1Tb/in ² N/A N/A 100pJ ^[12]
Device Type Maturity Present Density Cell Size MLC Capability Program Energy/bit Access Time (W/R)	RRAM Research 64Kb/chip 6F ² 2bits/cell 2pJ 10/20ns	CBRAM Prototype 2Mb/chip 6F ² 2bits/cell 2pJ 50/50ns	SEM Prototype 128Mb/chip 4F ² No 13pJ 100/20ns	Polymer Research 128b/chip 6F ² 2bits/cell NA 30/30ns	Molecular Research 160Kb/chip 6F ² No NA 20/20ns	Racetrack Research NA N/A 12bits/cell 2pJ 10/10ns	Holographic Product 515Gb/in ² N/A N/A N/A 3.1/5.4ms	Probe Prototype 1Tb/in ² N/A N/A 100pJ ^[12] 10/10us

Opportunities go far beyond a plugin replacement for disk drives...

- New distributed computer architectures that address exascale resilience, energy, and performance requirements
 - replace mechanical-disk-based data-stores with energy-efficient non-volatile memories
 - explore opportunities for NVM memory, from plug-compatible replacement (like the NV DIMM, below) to radical, new data-centric compute hierarchy (nanostores)
 - place low power compute cores close to the data store
 - reduce number of levels in the memory hierarchy
- Adapt existing software systems to exploit this new capabilities

Providing Performance Portability

AUTOTUNING

Maestro

- Portability
- Load balancing
- Autotuning

K. Spafford, J. Meredith, and J. Vetter, "Maestro: Data Orchestration and Tuning for OpenCL Devices," in *Euro-Par 2010 - Parallel Processing, vol. 6272, Lecture Notes in Computer Science, P. D'Ambra, M. Guarracino et al., Eds.: Springer Berlin / Heidelberg, 2010, pp. 275-86.*

Maestro: Multibuffering

Fig. 2. Double Buffering–This figure contrasts the difference between (a) the function offload model and (b) a very simple case of double buffering. Devices which can concurrently execute kernels and transfer data are able to hide some communication time with computation.

Maestro : Autotuning Workgroups

Fig. 3. Autotuning the local work group size – This figure shows the performance of the MD kernel on various platforms at different local work group sizes, normalized to the performance at a group size of 16. Lower runtimes are better.

Combined Autotuning Results

Fig. 6. Combined autotuning results – (a) Shows the combined benefit of autotuning both the local work group size the double buffering chunk size for a single GPU of the test platforms. (b) Shows the combined benefit of autotuning both the local work group size and the multi-GPU load imbalance using both devices (GPU+GPU or GPU+CPU) of the test platforms. Longer bars are better.

PERFORMANCE AND CORRECTNESS

Vancouver: Integrated Performance Analysis of MPI/GPU Applications

CUDA memory transfer (white)

MPI communication (yellow)

Vancouver: Integrated Performance Analysis of Compiler CUDA Generated

Applications

TAU: ParaProf: n,c,t 0,0,0 - /Users/sameer/rs/taudata/mm

000

Metric: TIME	
Value: Exclusiv	e percent

39.329%	pgi_cu_downloadx multiply_matrices var=a, dims=2, desc.devx=0, desc.devstride=1, desc.hoststride=1, desc.size=3000, desc.extent= pgi_cu_init multiply_matrices [{/mnt/netapp/home1/sameer/mm/mm2.f90}{9}]
1.822%	mymatrixmultiply [{mmdriv.f90} {1,0}]
1.648%	pgi_cu_uploadx multiply_matrices var=c, dims=2, desc.devx=0, desc.devstride=1, desc.hoststride=1, desc.size=3000, elementsize=4 [
1.618%	pgi_cu_uploadx multiply_matrices var=b, dims=2, desc.devx=0, desc.devstride=1, desc.hoststride=1, desc.size=3000, elementsize=4
0.083%	pgi_cu_free multiply_matrices [{/mnt/netapp/home1/sameer/mm/mm2.f90}]
0.07%	pgi_cu_alloc multiply_matrices [{/mnt/netapp/home1/sameer/mm/mm2.f90}{9}]
0.037%	multiply_matrices [{mm2.f90} {5,0}]
0.007%	pgi_cu_module multiply_matrices [{/mnt/netapp/home1/sameer/mm/mm2.f90}]
0.006%pgi_cu_launch multiply_matrices (multiply_matrices_11_gpu,gx=188,gy=188,gz=1,bx=16,by=16,bz=1,flag=0) [{/mnt/netapp/home?	
0.005%	pgi_cu_paramset multiply_matrices [{/mnt/netapp/home1/sameer/mm/mm2.f90}]
0.004%	pgi_cu_launch multiply_matrices (multiply_matrices_15_gpu,gx=188,gy=188,gz=1,bx=16,by=16,bz=1,flag=0) [{/mnt/netapp/home1/sa
0.002%	pgi_cu_module_function2 multiply_matrices name=multiply_matrices_11_gpu, argname=(null), argsize=20, varname=(null), varsize=0 [{/r
0.002%	pgi_cu_module_function2 multiply_matrices name=multiply_matrices_15_gpu, argname=(null), argsize=44, varname=(null), varsize=0 [{/r

() + +		
TAU: ParaProf: Thread Statistics: n,c,t, 0,0,0 – /Users/sameer/rs/taudata/mm							
Exclusive TIME %	Name	Exclusive TIME $ abla$	Inclusive TIME	Calls	Child Calls		
55.4%	pgi_cu_downloadx multiply_matrices var=a, dims=2, desc.devx=0, desc.devstride=1, desc.hostst	2.721	2.721	5	0		
39.3%	pgi_cu_init multiply_matrices [{/mnt/netapp/home1/sameer/mm/mm2.f90}{9}]	1.933	1.933	5	0		
1.8%	mymatrixmultiply [{mmdriv.f90} {1,0}]	0.09	4.914	1	5		
1.6%	_pgi_cu_uploadx multiply_matrices var=c, dims=2, desc.devx=0, desc.devstride=1, desc.hoststrid	0.081	0.081	5	0		
1.6%	pgi_cu_uploadx multiply_matrices var=b, dims=2, desc.devx=0, desc.devstride=1, desc.hoststrid	0.079	0.079	5	0		
0.1%	pgi_cu_free multiply_matrices [{/mnt/netapp/home1/sameer/mm/mm2.f90}]	0.004	0.004	15	0		
0.1%	pgi_cu_alloc multiply_matrices [{/mnt/netapp/home1/sameer/mm/mm2.f90}{9}]	0.003	0.003	15	0		
0.0%	multiply_matrices [{mm2.f90} {5,0}]	0.002	4.825	5	85		
0.0%	pgi_cu_module multiply_matrices [{/mnt/netapp/home1/sameer/mm/mm2.f90}{9}]	0	0	5	0		
0.0%	pgi_cu_launch multiply_matrices (multiply_matrices_11_gpu,gx=188,gy=188,gz=1,bx=16,by=16	0	0	5	0		
0.0%	pgi_cu_paramset multiply_matrices [{/mnt/netapp/home1/sameer/mm/mm2.f90}]	0	0	10	0		
0.0%	_pgi_cu_launch multiply_matrices (multiply_matrices_15_gpu,gx=188,gy=188,gz=1,bx=16,by=16	0	0	5	0 🔺		
0.0%	pgi_cu_module_function2 multiply_matrices name=multiply_matrices_11_gpu, argname=(null), arg:	0	0	5	0 🏒		

Partners: U of Oregon Ta Group, PGI

