A Model of Sinoatrial Node Cell Regulation by the Autonomic Nervous System:

Mechanisms of heart rate control

2011 CSGF Conference

Danilo Šćepanović July 22, 2011

Heart rate control is essential in health and disease

The heart must be able to keep up with daily demands

Heart rate control is essential in health and disease

Changes in heart rate control precede heart disease

Understanding the system can lead to new diagnostics or therapies

How is heart rate controlled?

The brain controls heart rate through the autonomic nervous system

How is it modeled?

Current models of autonomic control are Excellent sinoatrial node cell models exist phenomenological

We explicitly model the second messenger cascade

We constructed a detailed, mechanistic model with meaningful parameters

- **57** Nonlinear Coupled ODEs
 - Runs in 3x time using ode15s in Matlab
- **90** parameters from explicit data
 - Example: Cell geometry, Chemical affinities, Binding/ dissociation rates
- 42 parameters from implicit data
 - Fit to 60 data points, 6 equality constraints
 - Example: ion channel conductance with neurotransmitter

Does it work?

ΕE

C S

ΕE

C S

ΕE

C S

The model reproduces dynamic heart rate data

ЕΕ

What does it teach us?

Conclusion

- Summarizes a large body of knowledge in an explicit framework
- Explains mechanisms underlying behaviors
- Points out inconsistencies in our understanding
- Identifies important aspects to include in future models
- Our main contribution isn't WHAT the model can do, it's HOW it does it: explicit mechanisms and meaningful parameters
- Future work
 - Model individual nerve varicosities
 - Subcellular compartmentalization

Acknowledgements

- Richard J. Cohen Lab
- MIT EECS, Harvard Medical School
- Experimental scientists
 - Geoffrey Burnstock (autonomic nerves)
 - Alfred G. Gilman (G-proteins)
 - Terrone L. Rosenberry (acetylcholinesterase)
- DOE CSGF and Krell

References

http://lovebabypictures.com/baby-pic-sleeping_baby_picture.php

http://www.ehow.com/about_4672213_sprinting.html

http://ohinternet.com/HNG

http://www.smokinglung.org/quit-smoking-pills.html

