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Electromagnetic Fluctuations	



All matter is filled with constantly	


fluctuating current sources…	


	


	



causing nearby matter to interact	



… radiating photons	


       = fluctuating fields everywhere	


           at all frequencies	


         [ even at zero temperature	


            due  to quantum effects ]	





EM-fluctuation interactions are:	


• Increasingly important in several contexts	


	

— as devices reach sub-µm scales	



	



• Surprisingly hard to solve mathematically	


	

— even two-cylinder problems fully solved only recently	



	



• Increasingly solvable by	


    translation into classical wave problems.	


	

— many recent developments	



	



• Effects of new geometries are exciting and ~ unexplored.	
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dipole–dipole correlation (statistics of fluctuations)	



Planck spectrum (T=0 means only quantum fluctuations)	





van der Waals Forces: Approximations	



• Small separations only (e.g. < 10s of nm)	


	

= neglect wave effects	



	


• Dilute / weakly-polarizable only	


	

= neglect multiple scattering	





Casimir–Polder Forces	



for separations >> resonant wavelength	



d	
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U ~ − 1
d7

€ 

F ~ − 1
d8

fluctuating dipole	


finite speed of light = wave effects	

p1	



p2	



induced dipole	



… in general, not a simple power law, because	


	

polarizability is frequency-dependent (dispersion)	





Multiple scattering	



p1	


p2	



interactions are modified	


in non-dilute, strongly polarizable media	


= liquids/solids with large index contrasts	



	





Casimir Forces (Macroscopic Bodies)	



many interacting dipoles	



EM field must satisfy boundary 	


conditions at material interfaces	


…designable fluctuations!	





The Casimir Force���
[ H. Casimir, 1948]	
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•   10–7 N for a=1µm, A=1cm2	



•     1atm for a ~ 100nm, A=1µm2    	
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attractive force,	


monotonic decreasing	



Parallel, neutral, perfect-metal plates,	


separation a	





[U. Mohideen et. al. PRL, 81 (1998)]	



•  Recently verified via high precision experiments (~ 5% accuracy)  

•  Experiments beginning to explore more complex geometries 

Experimental Progress	



trenches	

 fluid experiments	

sphere–plate	



[H. B. Chan et. al. 	


PRL 101, 030401,(2008)]	



[Munday et. al. 	


Nature, 157 (2009)]	





[H. Chan et. al., Science 91, (2001)] 	



attractive Casimir force 	


causes stiction	



	


reduce stiction 
design the force?	



Micromechanical Devices	



nonlinear oscillator	



€ 

m˙ ̇ x + γ˙ x + kx + βx 3 = ΔV frequency response at different d	





De-wetting of Thin Fluid Films	



[ P. Müller, Tech. Univ. Munich ] 

thin polymer films on Si	

 glass/polymer drawn fibers	



[ D. S. Deng, Y. Fink, MIT ] 

Many researchers investigating	


“van der Waals” forces (e.g. as	


competition for surface tension)	


…	


but additive “vdW” power laws	


are often fundamentally invalid	


   (for non-planar interfaces)	





Radiative Transport	


Far-field: Black/grey body radiation	



Easy to compute by Kirchhoff’s law:	


        emissivity = absorptivity	


	

     < 1  … limited by black body	



	


… greatly modified by λ-scale structure	



Near-field (evanescent)	


thermal transport can	



exceed black-body limit	



e.g. for future	


thermo-photovoltaic systems?	
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difficulty:	


   current near-field theory	


   only for planes/spheres	



image: Wikipedia 



EM-fluctuation interactions are:	
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Selected Pre-2007 Theoretical Work	
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two-cylinders problems fully solved only five years ago	
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Selected Recent Theoretical Structures	


multi-body geometries	


[Rodriguez et. al. 2007]	



trench [Lambrecht et. al. 2009]	



PhC membranes	


[Rodriguez et. al. 2010]	



hockey pucks	


[Reid et. al. 2010]	



cone–plate 	


[Maghrebi et. al. 2010]	



sphere–plate	


[Maia Neto et. al. 2008]	



ellipse–plate (with hole)	


[Levin, Rodriguez et. al. 2010]	
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[Levin et. al. 2010]	





Theoretical Progress	


non-monotonic 	



multi-body effects	


repulsive forces 	



stable suspension of objects	



interplay of Casimir	


and optomechanical forces	

 glide	



symmetric 	


geometries	



repulsive 	


plate–hole	



[Rodriguez et al. PRL 104, 7303 (2007); 	


PRA 76, 032106 (2007)]	



[McCauley, Rodriguez et. al. 	


PRA 97 160401 (2008)]	



[Rodriguez, et. al. PRL 101 190404 (2008);	


PRL 104 160402; PRL 105 060401 (2010)]	



[Rodriguez et al., 	


PRA 97 	



160401 (2008)]	



[ Levin, 
Rodriguez et. al., 	



PRL 105,	


090403 (2010)]	



[Rodriguez et. al. APL, 98 194105 (2011)]	





Is this problem really that hard?	


non-interacting bosons — linear Maxwell-like PDEs, 	


                                          continuum material models	


                                          polynomial complexity	



• Surprisingly hard to solve numerically	


	


	

— solution can easily involve solving PDE’s 10,000’s of times	


	

— increasingly solvable by translation into classical wave 	


	

     problems (many recent developments)	



	


• Which PDE you solve makes a huge difference	


	


	

— many equivalent formulations	


	

 	

… which are well suited for numerics?	



	



[Rodriguez et al PRA 76, 032106 (2007)]	





goal: exploit���
mature, scalable methods ���

from classical EM ���
for arbitrary geometries/materials	
  

…need to relate quantum fluctuations	


	

 	

 	

 	

 	

 	

to classical nanophotonics?	





One ~ accessible formulation (~1960):���
���

Connecting fluctuations ���
to dissipation & Green’s functions ���

���
to get e.g. mean E2 and H2���

…compute energy densities, stresses, …	





Why do Green’s functions appear?	



fluctuating	


currents	



fluctuating	


E fields at x'	



⇔ x'	

 x'	



fluctuating	


current at x'	



…mean value of E(x)E(x') ~ field at x from current at x'	


	

 	

 	

 	

 	

~ Green’s function	



x	



equilibrium ⇒ standard thermal statistics	



reciprocity	





	
  
	
  

sum average energy density in all space	



Fluctuation–Dissipation Theorem ���
[ e.g. Lifshitz, Pitaevskii & Dzyaloshinskii, ~1960 ]	
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Ei(x)E j (x') ω
=
1
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= ω 2 ImGij (ω;x,x')
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T→ 0+as	



€ 

= Re[−iωGij (ω;x,x')] ⋅ Ji(x)J j (x')

current–current correlation 	


~ Planck distribution 	


Θ(ω,T) = coth(hω/kT)	



Scattering and Green’s Functions	
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U ~ dω d3x E(x)2
ω

V
∫

0

∞

∫ + H2 terms 

J(x) ~ δ(x-x’)eiωt 	


Etot(x) = Einc(x) + Escat(x)	


	

 	

	



electric response due to dipole current	



~ iωG(ω; x, x’)	
  

∇ ×∇ × −ω 2ε(x,ω )&' ()Gij (ω ,x,x
' ) = δ (x − x ' )êj

classical “photon” Green’s function	

Escat	



Einc	





Computing Green’s Functions	



€ 

∂µH
∂t

= −∇ ×E

∂εE
∂t

=∇ ×H − J

solve Maxwell’s equations in a localized basis:	


…a standard problem in classical electromagnetism	



finite differences	



•  choice of basis functions depends on problem	


•  ultimately, solving linear equation Ax = b	



boundary element methods	


(integral equations)	



[H. Reid, Jacob White, S. G. Johnson (2009)]	


[A. Rodriguez, S. G. Johnson (2007)]	
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  E
2 + H2  termsstress tensor	



surface S	



Stress Tensors from Green’s Functions	



J  = δ(x-x’)	

∇ ×∇ × −ω 2ε(x,ω )&' ()Gij (ω ,x,x
' ) = δ (x − x ' )êj

classical “photon” Green’s function	


electric response 	


to current source	



E(x)	



× coth(hω/2kT)	


          for T > 0	

 

Ei (x)Ej (x
' )

ω
= ω 2 ImGij (ω ,x,x

' )

fluctuation-dissipation theorem	



(similar for H correlations)	



[ Pitaevskii & Dzyaloshinskii, ~1960 ]	





The Finite Difference Method	



– for every frequency ω:	


– for every point x on the surface S:	


– compute classical Green’s function	



€ 

∇ ×∇ ×−ω 2ε(x,ω)[ ]Gij (ω,x − x ' ) = δ(x − x ' ) ˆ e j

simplest approach	



= Green’s function	


   or E at x from current at x	


= solving linear system	



€ 

Ay = b

€ 

A−1 =
1

∇ ×∇ ×−ω 2ε(x,ω)

[Rodriguez et al PRA 76, 032106 (2007)]	



  

€ 

F = dω
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S
∫∫

0

∞

∫ ⋅ d
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  E
2 + H2  termsstress tensor	



J(x,t) ∼ δ(x-x’)eiωt	



surface surrounding body S	





Problems with real frequencies	



€ 

F = dω
0

∞

∫ f (ω)

integrand f(ω) is ill-behaved	


•  wildly oscillating 	


•  broad bandwidth contributions up to Nyquist frequency	
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oscillations 
due to 	


geometric 	


resonances	


	



a	





Wick rotation (contour integration): 	


	

real ω to imaginary ω → iξ 	


	

— move contour away from poles	



                 (same integration result)	



Im ω = iξ	



Re ω	



0 at ∞	



=	



causality ⇒ poles only in lower-half plane	

€ 

Gω ~
eiωr / c

r
→Giξ ~

e−ξr / c

r

vacuum Green’s function:	



exponentially decaying	


non-oscillatory	


no resonance/interference	
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Im ω = ξ (c/d)	



well-behaved	


exponentially 
decaying	



decay scale 	


~ 1/d	



d	



Complex frequency: Wick rotation	



[ standard analytical technique,	


       critical for numerics ]	





Wick Rotations	



€ 

1
∇ ×∇ ×+ξ 2ε(x,iξ)

standard and especially nice numerical problem:	


—inverting real-symmetric positive-definite (conjugate-gradient)	


    [Rodriguez et. al. PRA 76, 032106 (2007)]	



€ 

1
∇ ×∇ ×−ω 2ε(x,ω)

ω → iξ 

unusual in classical nanophotonics:	


—cannot rely on geometric/material resonances	


    [Rodriguez et. al. PNAS 106 6883 (2010)] 	


	



geometric resonances 	


(e.g. chiral metamaterials)	



 [McCauley et. al. 	


PRB 82, 165108 (2010)] 

—achieving negative ε, µ 
over narrow bandwidth	


⇒ little change in force	



material resonances	



Re
 ε

(ω
)	



real ω	



ε(
iξ

)	



imaginary ω = iξ	



ε(x,iξ) is purely real	





Computing Forces in the Time Domain	



pulse 	


δ(t) at x’	



frequency response = 	


Fourier transform	



of scattered field E(x,ω)	



FDTD solvers widespread (off the shelf), efficient and versatile	


      e.g. anisotropic dielectrics, many types of boundary       	


            conditions, parallelizable	



want response	


integrated over	


broad range of	


frequencies	



 need to perform Wick rotation…in time!	


Wick-rotated Green’s function G(iξ): 	


field E(x) in response to exponentially growing current in time J(x,iξ) ~ δ(x-x’)eξt	





Complex Frequencies in Real Time?	



Green’s function inverts:	

∇ ×∇ × −ω 2ε(ω , x)
ω and ε appear together!	



⇒  mapping from ω → ξ f(ξ) is equivalent to	


     leaving ω unchanged and instead changing material: 
	

	



can obtain all the advantages of complex-frequency but	


for real frequency/time with transformed materials	



	

   note: ξ promoted from contour parameter to real frequency	


	



complex contour deformation	



ω → ξ                   	


ε(ω,x) → f(ξ)2 ε(ξ f(ξ),x) 	





Wick Rotations in the Time Domain	



ω → iξ	



€ 

ε(ω)→−ε(ξ)
Wick rotations	

 gain media	



exponentially growing solutions	


if negative at all frequencies	



Im ω = iξ	



Re ω	



different contour?	
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∂µH
∂t

= −∇ ×E

∂εE
∂t

=∇ ×H −σεE − J

time domain: real-frequency response in conductive medium	



[Rodriguez et al. PRA 80 012115 (2009)]	



most off-the-shelf FDTD software	


already supports conductive media:	


	



 	

– frequency domain ~ 105 CPU hours	


  	

– time domain ~ 100–103 CPU hours 	



Im ω = iξ	



Re ω	



f(ξ) = i 



Stress tensor in Time-domain	



Finite-difference time-domain simulation for each point on S	


to get the entire spectrum’s contribution to stress tensor at that point	



stress tensor(x) ~ g(ω )G(ω , x)dω
0

∞

∫ = ĝ(−t)Ĝ(t, x)dt
0

∞

∫

geometry-	


independent	


kernel	



(Fourier transforms)	



geometry-	


dependent	


Green’s function:	


field at x from source at x	



example	


structure:	





Stress tensor in Time-domain	



Finite-difference time-domain simulation for each point on S	


to get the entire spectrum’s contribution to stress tensor at that point	



stress tensor(x) ~ g(ω )G(ω , x)dω
0

∞

∫ = ĝ(−t)Ĝ(t, x)dt
0

∞

∫

geometry-	


independent	


kernel	



geometry-	


dependent	


Green’s function:	


field at x from source at x	



(Fourier transforms)	





One more trick…replace point 
sources with Fourier surfaces	



cos(nπx/L)	



n=
0 

n=
4 

•  rapid convergence ~ 1/n4	


•  need ~ 10 sources	





EM-fluctuation interactions are:	
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… almost any geometry you can 
imagine is unstudied …���

���
How much can we alter the effect?	





A repulsive geometry in vacuum	



simple: an elongated “needle”	


above a metal plate with a hole	



force	





A repulsive geometry in vacuum	



needle is repelled,	


sphere is attracted	


	


… why?	





Repulsion and stability via materials?	



Theorem 2: [ Rahi, PRL 2010 ]	


stable equilibrium impossible	


for metals/dielectrics in vacuum	



Repulsion impossible	


for mirror-symmetric	


geometries	



flu
id
	



ε1 ε3 <  ε2  < 	



[ theory: Dzyaloshinskii, 1961 ]	



[ experiment: Munday 2009 ]	



Theorem 1: [ Kenneth, PRL 2006 ]	





Stability via Material Dispersion	



stable non-touching pair	



large 
separation 

small 
separation 

gold 

εT εS 

εE	

Ethanol	



εE > εS > εT 
attraction	



εS > εE > εT 
repulsion	

[ Rodriguez et. al. PRL 104, 160402 (2010) ]	



Teflon	


Silicon	





Casimir Optomechanics	



goal: control and exploit Casimir force in MEMS devices 	


using evanescent optical forces	


 

Silicon	


Silica	



incident light (λ)	


E	



[ Rodriguez et. al. OE 19, 2215 (2010) ]	
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Probing the Casimir force	


stress 	


(MPa)	



d0	

 d	



[ Rodriguez et. al. APL 19, 2215 (2011) ]	



•  tuning equilibrium         	


        separation via λ	



•  multistability behavior	



•  Casimir force induces              	


  unstable equilibrium	





Non-equilibrium Heat Transfer	



hot object (T1)	

 cold object (T2)	



radiative electromagnetic 
waves (heat) flows from 
hot → cold object	


 

currently, little known about heat transfer beyond	


sphere–plate and parallel-plate geometries 

as bodies are brought closer, evanescent modes couple…	


⇒ can exceed blackbody (far-field) heat transfer  



Non-equilibrium Heat Transfer	


Far-field: Black/grey body radiation	



Easy to compute by Kirchhoff’s law:	


        emissivity = absorptivity	


	

     < 1  … limited by black body	



	


… greatly modified by λ-scale structure	



Near-field (evanescent)	


thermal transport can	



exceed black-body limit	



e.g. for future	


thermo-photovoltaic systems?	
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difficulty:	


   current near-field theory	


   only for planes/spheres	



image: Wikipedia 



Stochastic Time Domain Method	



€ 

Ji(x)J j (x') ω
=Θ(ω,T)δ(x − x')δij

current–current correlation 	


at local temperature T	



Fluctuation-Dissipation Theorem	



hot object (T1)	

 cold object (T2)	



€ 

∂B
∂t

= −∇ ×E

∂D
∂t

=∇ ×H + J

Langevin method	



€ 

D = E + P

€ 

d2P
dt 2

+ γ
dP
dt

+ω0
2P =σE + J

Maxwells equations with auxiliary equation for the material response	


(polarization/material response)	



correlated random #s	





FDTD example: two cylinders	





Frequency-Selective Enhancement	



en
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t  

   
   

  	



          frequency ω (2πc/a)	



•  dramatic near-field enhancement        	


  over un-patterned slabs at    	


  selective frequencies	



•  selectivity important for      	


  applications involving 	


  thermophotovoltaic devices	


  	


	


	



patterned PhC slabs	



[ Rodriguez et. al. PRL, in press (2011) ]	





Overall heat transfer	
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separation d (microns)	



patterned PhC slabs	



•  overall heat transfer better	


  than un-patterned slabs over	


  wide range of separations	


	


•  optimal separation depends on T	


	


	



[ Rodriguez et. al. PRL, In press, (2011) ]	





Fin ���
	



• The Casimir field is virgin territory for	


   mathematical modeling & computation	


	


• Similar opportunities in non-equilibrium transport,	


   thin-film dewetting, critical-Casimir effects, …	



Rodriguez et. al., “Casimir effect in 	


microstructured geometries”, 	


Nature Photonics 5, 211–221 (2011) 

review article: 

Thanks!���
 


