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Electromagnetic Fluctuations	


All matter is filled with constantly	

fluctuating current sources…	

	

	


causing nearby matter to interact	


… radiating photons	

       = fluctuating fields everywhere	

           at all frequencies	

         [ even at zero temperature	

            due  to quantum effects ]	




EM-fluctuation interactions are:	

• Increasingly important in several contexts	

	
— as devices reach sub-µm scales	


	


• Surprisingly hard to solve mathematically	

	
— even two-cylinder problems fully solved only recently	


	


• Increasingly solvable by	

    translation into classical wave problems.	

	
— many recent developments	


	


• Effects of new geometries are exciting and ~ unexplored.	
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dipole–dipole correlation (statistics of fluctuations)	


Planck spectrum (T=0 means only quantum fluctuations)	




van der Waals Forces: Approximations	


• Small separations only (e.g. < 10s of nm)	

	
= neglect wave effects	


	

• Dilute / weakly-polarizable only	

	
= neglect multiple scattering	




Casimir–Polder Forces	


for separations >> resonant wavelength	


d	
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U ~ − 1
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F ~ − 1
d8

fluctuating dipole	

finite speed of light = wave effects	
p1	


p2	


induced dipole	


… in general, not a simple power law, because	

	
polarizability is frequency-dependent (dispersion)	




Multiple scattering	


p1	

p2	


interactions are modified	

in non-dilute, strongly polarizable media	

= liquids/solids with large index contrasts	


	




Casimir Forces (Macroscopic Bodies)	


many interacting dipoles	


EM field must satisfy boundary 	

conditions at material interfaces	

…designable fluctuations!	




The Casimir Force���
[ H. Casimir, 1948]	
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•   10–7 N for a=1µm, A=1cm2	


•     1atm for a ~ 100nm, A=1µm2    	


m
et

al
 p

la
te
	


m
et

al
 p

la
te
	


attractive force,	

monotonic decreasing	


Parallel, neutral, perfect-metal plates,	

separation a	




[U. Mohideen et. al. PRL, 81 (1998)]	


•  Recently verified via high precision experiments (~ 5% accuracy)  

•  Experiments beginning to explore more complex geometries 

Experimental Progress	


trenches	
 fluid experiments	
sphere–plate	


[H. B. Chan et. al. 	

PRL 101, 030401,(2008)]	


[Munday et. al. 	

Nature, 157 (2009)]	




[H. Chan et. al., Science 91, (2001)] 	


attractive Casimir force 	

causes stiction	


	

reduce stiction 
design the force?	


Micromechanical Devices	


nonlinear oscillator	


€ 

m˙ ̇ x + γ˙ x + kx + βx 3 = ΔV frequency response at different d	




De-wetting of Thin Fluid Films	


[ P. Müller, Tech. Univ. Munich ] 

thin polymer films on Si	
 glass/polymer drawn fibers	


[ D. S. Deng, Y. Fink, MIT ] 

Many researchers investigating	

“van der Waals” forces (e.g. as	

competition for surface tension)	

…	

but additive “vdW” power laws	

are often fundamentally invalid	

   (for non-planar interfaces)	




Radiative Transport	

Far-field: Black/grey body radiation	


Easy to compute by Kirchhoff’s law:	

        emissivity = absorptivity	

	
     < 1  … limited by black body	


	

… greatly modified by λ-scale structure	


Near-field (evanescent)	

thermal transport can	


exceed black-body limit	


e.g. for future	

thermo-photovoltaic systems?	
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difficulty:	

   current near-field theory	

   only for planes/spheres	


image: Wikipedia 
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two-cylinders problems fully solved only five years ago	
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Selected Recent Theoretical Structures	

multi-body geometries	

[Rodriguez et. al. 2007]	


trench [Lambrecht et. al. 2009]	


PhC membranes	

[Rodriguez et. al. 2010]	


hockey pucks	

[Reid et. al. 2010]	


cone–plate 	

[Maghrebi et. al. 2010]	


sphere–plate	

[Maia Neto et. al. 2008]	


ellipse–plate (with hole)	

[Levin, Rodriguez et. al. 2010]	
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Theoretical Progress	

non-monotonic 	


multi-body effects	

repulsive forces 	


stable suspension of objects	


interplay of Casimir	

and optomechanical forces	
 glide	


symmetric 	

geometries	


repulsive 	

plate–hole	


[Rodriguez et al. PRL 104, 7303 (2007); 	

PRA 76, 032106 (2007)]	


[McCauley, Rodriguez et. al. 	

PRA 97 160401 (2008)]	


[Rodriguez, et. al. PRL 101 190404 (2008);	

PRL 104 160402; PRL 105 060401 (2010)]	


[Rodriguez et al., 	

PRA 97 	


160401 (2008)]	


[ Levin, 
Rodriguez et. al., 	


PRL 105,	

090403 (2010)]	


[Rodriguez et. al. APL, 98 194105 (2011)]	




Is this problem really that hard?	

non-interacting bosons — linear Maxwell-like PDEs, 	

                                          continuum material models	

                                          polynomial complexity	


• Surprisingly hard to solve numerically	

	

	
— solution can easily involve solving PDE’s 10,000’s of times	

	
— increasingly solvable by translation into classical wave 	

	
     problems (many recent developments)	


	

• Which PDE you solve makes a huge difference	

	

	
— many equivalent formulations	

	
 	
… which are well suited for numerics?	


	


[Rodriguez et al PRA 76, 032106 (2007)]	




goal: exploit���
mature, scalable methods ���

from classical EM ���
for arbitrary geometries/materials	  

…need to relate quantum fluctuations	

	
 	
 	
 	
 	
 	
to classical nanophotonics?	




One ~ accessible formulation (~1960):���
���

Connecting fluctuations ���
to dissipation & Green’s functions ���

���
to get e.g. mean E2 and H2���

…compute energy densities, stresses, …	




Why do Green’s functions appear?	


fluctuating	

currents	


fluctuating	

E fields at x'	


⇔ x'	
 x'	


fluctuating	

current at x'	


…mean value of E(x)E(x') ~ field at x from current at x'	

	
 	
 	
 	
 	
~ Green’s function	


x	


equilibrium ⇒ standard thermal statistics	


reciprocity	




	  
	  

sum average energy density in all space	


Fluctuation–Dissipation Theorem ���
[ e.g. Lifshitz, Pitaevskii & Dzyaloshinskii, ~1960 ]	
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Ei(x)E j (x') ω
=
1
2
Re Ei(x)J j (x') ω
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= ω 2 ImGij (ω;x,x')

€ 

T→ 0+as	


€ 

= Re[−iωGij (ω;x,x')] ⋅ Ji(x)J j (x')

current–current correlation 	

~ Planck distribution 	

Θ(ω,T) = coth(hω/kT)	


Scattering and Green’s Functions	  

€ 

U ~ dω d3x E(x)2
ω

V
∫

0

∞

∫ + H2 terms 

J(x) ~ δ(x-x’)eiωt 	

Etot(x) = Einc(x) + Escat(x)	

	
 	
	


electric response due to dipole current	


~ iωG(ω; x, x’)	  

∇ ×∇ × −ω 2ε(x,ω )&' ()Gij (ω ,x,x
' ) = δ (x − x ' )êj

classical “photon” Green’s function	
Escat	


Einc	




Computing Green’s Functions	


€ 

∂µH
∂t

= −∇ ×E

∂εE
∂t

=∇ ×H − J

solve Maxwell’s equations in a localized basis:	

…a standard problem in classical electromagnetism	


finite differences	


•  choice of basis functions depends on problem	

•  ultimately, solving linear equation Ax = b	


boundary element methods	

(integral equations)	


[H. Reid, Jacob White, S. G. Johnson (2009)]	

[A. Rodriguez, S. G. Johnson (2007)]	
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S
∫∫

0

∞

∫ ⋅ d
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  E
2 + H2  termsstress tensor	


surface S	


Stress Tensors from Green’s Functions	


J  = δ(x-x’)	
∇ ×∇ × −ω 2ε(x,ω )&' ()Gij (ω ,x,x
' ) = δ (x − x ' )êj

classical “photon” Green’s function	

electric response 	

to current source	


E(x)	


× coth(hω/2kT)	

          for T > 0	
 

Ei (x)Ej (x
' )

ω
= ω 2 ImGij (ω ,x,x

' )

fluctuation-dissipation theorem	


(similar for H correlations)	


[ Pitaevskii & Dzyaloshinskii, ~1960 ]	




The Finite Difference Method	


– for every frequency ω:	

– for every point x on the surface S:	

– compute classical Green’s function	


€ 

∇ ×∇ ×−ω 2ε(x,ω)[ ]Gij (ω,x − x ' ) = δ(x − x ' ) ˆ e j

simplest approach	


= Green’s function	

   or E at x from current at x	

= solving linear system	


€ 

Ay = b

€ 

A−1 =
1

∇ ×∇ ×−ω 2ε(x,ω)

[Rodriguez et al PRA 76, 032106 (2007)]	
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  E
2 + H2  termsstress tensor	


J(x,t) ∼ δ(x-x’)eiωt	


surface surrounding body S	




Problems with real frequencies	


€ 

F = dω
0

∞

∫ f (ω)

integrand f(ω) is ill-behaved	

•  wildly oscillating 	

•  broad bandwidth contributions up to Nyquist frequency	


frequency ω (c/d)	
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oscillations 
due to 	

geometric 	

resonances	

	


a	




Wick rotation (contour integration): 	

	
real ω to imaginary ω → iξ 	

	
— move contour away from poles	


                 (same integration result)	


Im ω = iξ	


Re ω	


0 at ∞	


=	


causality ⇒ poles only in lower-half plane	
€ 

Gω ~
eiωr / c

r
→Giξ ~

e−ξr / c

r

vacuum Green’s function:	


exponentially decaying	

non-oscillatory	

no resonance/interference	
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Im ω = ξ (c/d)	


well-behaved	

exponentially 
decaying	


decay scale 	

~ 1/d	


d	


Complex frequency: Wick rotation	


[ standard analytical technique,	

       critical for numerics ]	




Wick Rotations	


€ 

1
∇ ×∇ ×+ξ 2ε(x,iξ)

standard and especially nice numerical problem:	

—inverting real-symmetric positive-definite (conjugate-gradient)	

    [Rodriguez et. al. PRA 76, 032106 (2007)]	


€ 

1
∇ ×∇ ×−ω 2ε(x,ω)

ω → iξ 

unusual in classical nanophotonics:	

—cannot rely on geometric/material resonances	

    [Rodriguez et. al. PNAS 106 6883 (2010)] 	

	


geometric resonances 	

(e.g. chiral metamaterials)	


 [McCauley et. al. 	

PRB 82, 165108 (2010)] 

—achieving negative ε, µ 
over narrow bandwidth	

⇒ little change in force	


material resonances	


Re
 ε

(ω
)	


real ω	


ε(
iξ

)	


imaginary ω = iξ	


ε(x,iξ) is purely real	




Computing Forces in the Time Domain	


pulse 	

δ(t) at x’	


frequency response = 	

Fourier transform	


of scattered field E(x,ω)	


FDTD solvers widespread (off the shelf), efficient and versatile	

      e.g. anisotropic dielectrics, many types of boundary       	

            conditions, parallelizable	


want response	

integrated over	

broad range of	

frequencies	


 need to perform Wick rotation…in time!	

Wick-rotated Green’s function G(iξ): 	

field E(x) in response to exponentially growing current in time J(x,iξ) ~ δ(x-x’)eξt	




Complex Frequencies in Real Time?	


Green’s function inverts:	
∇ ×∇ × −ω 2ε(ω , x)
ω and ε appear together!	


⇒  mapping from ω → ξ f(ξ) is equivalent to	

     leaving ω unchanged and instead changing material: 
	
	


can obtain all the advantages of complex-frequency but	

for real frequency/time with transformed materials	


	
   note: ξ promoted from contour parameter to real frequency	

	


complex contour deformation	


ω → ξ                   	

ε(ω,x) → f(ξ)2 ε(ξ f(ξ),x) 	




Wick Rotations in the Time Domain	


ω → iξ	


€ 

ε(ω)→−ε(ξ)
Wick rotations	
 gain media	


exponentially growing solutions	

if negative at all frequencies	


Im ω = iξ	


Re ω	


different contour?	


€ 

ω →ξ 1+
iσ
ξ

€ 

ε → 1+
iσ
ξ
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€ 

∂µH
∂t

= −∇ ×E

∂εE
∂t

=∇ ×H −σεE − J

time domain: real-frequency response in conductive medium	


[Rodriguez et al. PRA 80 012115 (2009)]	


most off-the-shelf FDTD software	

already supports conductive media:	

	


 	
– frequency domain ~ 105 CPU hours	

  	
– time domain ~ 100–103 CPU hours 	


Im ω = iξ	


Re ω	


f(ξ) = i 



Stress tensor in Time-domain	


Finite-difference time-domain simulation for each point on S	

to get the entire spectrum’s contribution to stress tensor at that point	


stress tensor(x) ~ g(ω )G(ω , x)dω
0

∞

∫ = ĝ(−t)Ĝ(t, x)dt
0

∞

∫

geometry-	

independent	

kernel	


(Fourier transforms)	


geometry-	

dependent	

Green’s function:	

field at x from source at x	


example	

structure:	




Stress tensor in Time-domain	


Finite-difference time-domain simulation for each point on S	

to get the entire spectrum’s contribution to stress tensor at that point	


stress tensor(x) ~ g(ω )G(ω , x)dω
0

∞

∫ = ĝ(−t)Ĝ(t, x)dt
0

∞

∫

geometry-	

independent	

kernel	


geometry-	

dependent	

Green’s function:	

field at x from source at x	


(Fourier transforms)	




One more trick…replace point 
sources with Fourier surfaces	


cos(nπx/L)	


n=
0 

n=
4 

•  rapid convergence ~ 1/n4	

•  need ~ 10 sources	
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… almost any geometry you can 
imagine is unstudied …���

���
How much can we alter the effect?	




A repulsive geometry in vacuum	


simple: an elongated “needle”	

above a metal plate with a hole	


force	




A repulsive geometry in vacuum	


needle is repelled,	

sphere is attracted	

	

… why?	




Repulsion and stability via materials?	


Theorem 2: [ Rahi, PRL 2010 ]	

stable equilibrium impossible	

for metals/dielectrics in vacuum	


Repulsion impossible	

for mirror-symmetric	

geometries	


flu
id
	


ε1 ε3 <  ε2  < 	


[ theory: Dzyaloshinskii, 1961 ]	


[ experiment: Munday 2009 ]	


Theorem 1: [ Kenneth, PRL 2006 ]	




Stability via Material Dispersion	


stable non-touching pair	


large 
separation 

small 
separation 

gold 

εT εS 

εE	
Ethanol	


εE > εS > εT 
attraction	


εS > εE > εT 
repulsion	
[ Rodriguez et. al. PRL 104, 160402 (2010) ]	


Teflon	

Silicon	




Casimir Optomechanics	


goal: control and exploit Casimir force in MEMS devices 	

using evanescent optical forces	

 

Silicon	

Silica	


incident light (λ)	

E	


[ Rodriguez et. al. OE 19, 2215 (2010) ]	
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repulsive	
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Probing the Casimir force	

stress 	

(MPa)	


d0	
 d	


[ Rodriguez et. al. APL 19, 2215 (2011) ]	


•  tuning equilibrium         	

        separation via λ	


•  multistability behavior	


•  Casimir force induces              	

  unstable equilibrium	




Non-equilibrium Heat Transfer	


hot object (T1)	
 cold object (T2)	


radiative electromagnetic 
waves (heat) flows from 
hot → cold object	

 

currently, little known about heat transfer beyond	

sphere–plate and parallel-plate geometries 

as bodies are brought closer, evanescent modes couple…	

⇒ can exceed blackbody (far-field) heat transfer  



Non-equilibrium Heat Transfer	

Far-field: Black/grey body radiation	


Easy to compute by Kirchhoff’s law:	

        emissivity = absorptivity	

	
     < 1  … limited by black body	


	

… greatly modified by λ-scale structure	


Near-field (evanescent)	

thermal transport can	


exceed black-body limit	


e.g. for future	

thermo-photovoltaic systems?	


ho
t	


PV
 c

el
l	


he
at
	


ph
ot

on
s	


difficulty:	

   current near-field theory	

   only for planes/spheres	


image: Wikipedia 



Stochastic Time Domain Method	


€ 

Ji(x)J j (x') ω
=Θ(ω,T)δ(x − x')δij

current–current correlation 	

at local temperature T	


Fluctuation-Dissipation Theorem	


hot object (T1)	
 cold object (T2)	


€ 

∂B
∂t

= −∇ ×E

∂D
∂t

=∇ ×H + J

Langevin method	


€ 

D = E + P

€ 

d2P
dt 2

+ γ
dP
dt

+ω0
2P =σE + J

Maxwells equations with auxiliary equation for the material response	

(polarization/material response)	


correlated random #s	




FDTD example: two cylinders	




Frequency-Selective Enhancement	


en
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          frequency ω (2πc/a)	


•  dramatic near-field enhancement        	

  over un-patterned slabs at    	

  selective frequencies	


•  selectivity important for      	

  applications involving 	

  thermophotovoltaic devices	

  	

	

	


patterned PhC slabs	


[ Rodriguez et. al. PRL, in press (2011) ]	




Overall heat transfer	
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separation d (microns)	


patterned PhC slabs	


•  overall heat transfer better	

  than un-patterned slabs over	

  wide range of separations	

	

•  optimal separation depends on T	

	

	


[ Rodriguez et. al. PRL, In press, (2011) ]	




Fin ���
	


• The Casimir field is virgin territory for	

   mathematical modeling & computation	

	

• Similar opportunities in non-equilibrium transport,	

   thin-film dewetting, critical-Casimir effects, …	


Rodriguez et. al., “Casimir effect in 	

microstructured geometries”, 	

Nature Photonics 5, 211–221 (2011) 

review article: 

Thanks!���
 


