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Constraints from Atmospheric Science Needs

* Climate Runs (e.g., IPCC) Require High Throughput
— Generally held at 5 Sim. Years Per Day (SYPD)
— 1,825 times faster than realtime
— Implicit methods need enough work per node for efficiency
— Sufficient problem sizes fall below 5 SYPD (currently)
* Thus, we resort to time-explicit methods
— Good for parallel communication

— Not so good for the time step

* Graduate work
— Increase the time step
— Decrease parallel communication



Algorithm Design Choices In This Direction

* Fully discrete: Only 1 stage of comm. per time step
— Must translate spatial information into temporal

— Characteristics-based methods do this via trajectories
* Can have large CFL time steps
* Majority of my graduate work

— ADER uses PDE itself to obtain time derivs from space derivs
 Multiple moments per cell

— Reconstruction stencil is smaller, sometimes entirely local

— Generally more accurate that grid refinement

— However, usually restricts time step
* Increasing FLOPS is “good” if:

— Increases the accuracy of your solution
— Decreases data movement on the machine



Current State Of The Art: Spectral Element

* Spectral Element Method (Finite Elem. / Galerkin)
— Spatially local (no reconstruction halo)
— Cubed-sphere grid (quasi-uniform)
— Runge-Kutta time integrator
— 5 SYPD for Ax = 14km atmosphere with = 90,000 cores

* 93 Million unique model points

* At .. =21 seconds

* We typically use At = 10 seconds

* Average of 5.5 milliseconds per time step

— Time step scales with Ax?! p1/
* pis number of nodes per element
* Ax is 1-D length of an element



Reconsidering The Use Of Existing Machinery

A study limited DG modes with HWENO interp

Implemented two methods
— 4%-Order Multi-Moment FV HWENO Method
— 3rd-Order DG Method Limited by HWENO

FV-HWENO used CFL over 3x larger than DG
FV-HWENO accuracy similar or better than 3"-order DG



Reconsidering The Use Of Existing Machinery

A study limited DG modes with HWENO interp

Implemented two methods
— 4th-Order Multi-Moment FV HWENO Method
— 3rd-Order DG Method Limited by HWENO

FV-HWENO used CFL over 3x larger than DG
FV-HWENO accuracy similar or better than 3"-order DG

Is the FV-HWENO scheme competitive in its own right?



ADER-Type Finite Volume Simulation

U IF(U) 9G(U)
ot 0x dy
* Fully Discrete Finite Volume Framework
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e Generic Conservation Law:
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e Use time-averaged fluxes and sources

* Cauchy-Kowalewski Procedure at each integration point

— Form Taylor series in time, use PDE itself to get time derivatives
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Local Multi-Moment Finite Volume Simulation

* Need discrete evolution for higher spatial moments
— Simply differentiate the PDE with respect to space
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— Integrate over a space-time domain
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— Higher moments use the same FV machinery
* Use local moments for local reconstruction
* Local recon & C-K provides local space-time Taylor polyn
e Space-time polyn closes the scheme for all moments
* Use symbolic math software to generate all derivatives



New Proposed Method: Multi-Moment ADER-Taylor

* Fully Discrete Time Stepping (ADER)

— Cut out Runge-Kutta stage syncs & comms

 Reduce ADER Expense (Taylor expansion of C-K derivs)

* Multiple modes per cell (as with DG or SE)
e Spatially local (as with DG or SE)
e Time step scales Ax?! p°

— CFL remains at unity for all p-refinement

* Most similar to modal DG with Taylor basis
— Cell evolves value, 15t-deriv, 2"d-deriv, etc.

* Readily applicable to an arbitrary mesh

e HWENO limiters and hybrid schemes apply easily



Computational Aspects Of Multi-Moment ADER

* Increases computation (Good or Bad?)
— Significantly decreases communication (Good)

— Legitimately increases resolution (Good)

— Does not increase time step (Neutral, better than Galerkin)
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Burger’s Equation Shock Simulation: HWENO

Plot of One-Period Sine Wave with 100 cells att = 0.5
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Error Comparison between MM-ADER and RKDG

Error for One-Period Sine Wave with 25 Cells after 4 Revolutions
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Questions?



ADER-Taylor Modification

 ADER methods notoriously expensive
— C-K procedure expensive & performed at all points

 ADER-Taylor modification

— Perform C-K procedure only once at cell center

* Generates time & mixed space-time derivatives
— Form space-time Taylor polyn over local space-time domain
— Sample polyn at points in space and time for fluxes and sources

* Reduces computational constant and complexity
— In 2-D, C-K needs order n3 space-time derivatives (n = # modes)
— Cost of each derivatives grows at up to n?
— Number of 2-D space-time quadrature points grows with n3
— Taylor polyn removes the growth with quadrature points



Flux-Based Characteristic Semi-Lagrangian Method
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* Equations reduced to Lagrangian transport

— Transported quantities are “Characteristic Variables” (CVs)
— Solve CV transport with semi-Lagrangian method

* Fully-Discrete Finite-Volume Formulation O
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Pros and Cons of the FBCSL Method

* Pros
— Large time step: Limited by Jacobian gradient only

— My experience, CFL=3 or larger

— Communication frequency extremely low

e Cons

— Genuinely multi-dimensional very complicated
* Often not a problem on orthogonal meshes
 Definitely a problem on non-orthogonal (i.e., cubed-sphere)

— Communication volume higher when performed

— Source term inclusion can be tricky and expensive



Chronological Survey of Atmos Integration Schemes

* Semi-Implicit, Semi-Lagrangian
— Linearize & split fast waves, solve implicitly
— Solve slow dynamics with semi-Lagrangian method
— Large time step, Very heavy network traffic

* Explicit Eulerian Finite-Volume
— Sub-cycle fast waves with low stencil, cheap method
— Solve slow dynamics with Eulerian method
— Time step roughly CFL=3 or 4, Reduced network traffic

e Explicit, Eulerian Galerkin (i.e., Finite Element)

— Still sub-cycle fast waves
— Solve slow dynamics with Galerkin method
— Time step suffers significantly, Minimal network traffic



