Efficient Parallel Numerical Integration Algorithms for the Atmospheric Sciences

Matthew R. Norman

SIAM GS11

July 20, 2011

Constraints from Atmospheric Science Needs

- Climate Runs (e.g., IPCC) Require High Throughput
 - Generally held at 5 Sim. Years Per Day (SYPD)
 - 1,825 times faster than realtime
 - Implicit methods need enough work per node for efficiency
 - Sufficient problem sizes fall below 5 SYPD (currently)
- Thus, we resort to time-explicit methods
 - Good for parallel communication
 - Not so good for the time step
- Graduate work
 - Increase the time step
 - Decrease parallel communication

Algorithm Design Choices In This Direction

- Fully discrete: Only 1 stage of comm. per time step
 - Must translate spatial information into temporal
 - Characteristics-based methods do this via trajectories
 - Can have large CFL time steps
 - Majority of my graduate work
 - ADER uses PDE itself to obtain time derivs from space derivs
- Multiple moments per cell
 - Reconstruction stencil is smaller, sometimes entirely local
 - Generally more accurate that grid refinement
 - However, usually restricts time step
- Increasing FLOPS is "good" if:
 - Increases the accuracy of your solution
 - Decreases data movement on the machine

Current State Of The Art: Spectral Element

- Spectral Element Method (Finite Elem. / Galerkin)
 - Spatially local (no reconstruction halo)
 - Cubed-sphere grid (quasi-uniform)
 - Runge-Kutta time integrator
 - 5 SYPD for $\Delta x \approx 14$ km atmosphere with $\approx 90,000$ cores
 - 93 Million unique model points
 - $\Delta t_{max} \approx 21$ seconds
 - We typically use $\Delta t = 10$ seconds
 - Average of 5.5 milliseconds per time step
 - Time step scales with $\Delta x^{-1} p^{-1.7}$
 - p is number of nodes per element
 - Δx is 1-D length of an element

Reconsidering The Use Of Existing Machinery

- A study limited DG modes with HWENO interp
- Implemented two methods
 - 4th-Order Multi-Moment FV HWENO Method
 - 3rd-Order DG Method Limited by HWENO
- FV-HWENO used CFL over 3x larger than DG
- FV-HWENO accuracy similar or better than 3rd-order DG

Reconsidering The Use Of Existing Machinery

- A study limited DG modes with HWENO interp
- Implemented two methods
 - 4th-Order Multi-Moment FV HWENO Method
 - 3rd-Order DG Method Limited by HWENO
- FV-HWENO used CFL over 3x larger than DG
- FV-HWENO accuracy similar or better than 3rd-order DG
- Is the FV-HWENO scheme competitive in its own right?

ADER-Type Finite Volume Simulation

=S

- Generic Conservation Law: $\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} + \frac{\partial \mathbf{G}(\mathbf{U})}{\partial y}$
- Fully Discrete Finite Volume Framework

$$\overline{\mathbf{U}}_{i,j,n+1} = \overline{\mathbf{U}}_{i,j,n} - \frac{\Delta t}{\Delta x} \left(\hat{\mathbf{F}}_{i+1/2,j} - \hat{\mathbf{F}}_{i-1/2,j} \right) - \frac{\Delta t}{\Delta z} \left(\hat{\mathbf{H}}_{i,j+1/2} - \hat{\mathbf{H}}_{i,j-1/2} \right) + \Delta t \overline{\hat{\mathbf{S}}}_{i,j}$$

Use time-averaged fluxes and sources

U

- Cauchy-Kowalewski Procedure at each integration point
 - Form Taylor series in time, use PDE itself to get time derivatives

$$\begin{pmatrix} x^*, y^*, t \end{pmatrix} = \mathbf{U} \begin{pmatrix} x^*, y^*, t_n \end{pmatrix} + \frac{\partial \mathbf{U}}{\partial t} \Big|_{x^*, y^*, t_n} \begin{pmatrix} t - t_n \end{pmatrix} + \frac{\partial^2 \mathbf{U}}{\partial t^2} \Big|_{x^*, y^*, t_n} \frac{\begin{pmatrix} t - t_n \end{pmatrix}^2}{2} + \cdots$$

$$\frac{\partial \mathbf{U}}{\partial t} \Big|_{x^*, y^*, t_n} = -\frac{\partial \mathbf{F}}{\partial \mathbf{U}} \frac{\partial \mathbf{U}}{\partial x} \Big|_{x^*, y^*, t_n} - \frac{\partial \mathbf{G}}{\partial \mathbf{U}} \frac{\partial \mathbf{U}}{\partial y} \Big|_{x^*, y^*, t_n} + \mathbf{S} \left(\mathbf{U} \Big|_{x^*, y^*, t_n} \right)$$

Local Multi-Moment Finite Volume Simulation

- Need discrete evolution for higher spatial moments
 - Simply differentiate the PDE with respect to space

$$\frac{\partial}{\partial t}\frac{\partial^{m+n}\mathbf{U}}{\partial x^m\partial y^n} + \frac{\partial}{\partial x}\frac{\partial^{m+n}\mathbf{F}(\mathbf{U})}{\partial x^m\partial y^n} + \frac{\partial}{\partial y}\frac{\partial^{m+n}\mathbf{G}(\mathbf{U})}{\partial x^m\partial y^n} = \frac{\partial^{m+n}}{\partial x^m\partial y^n}\mathbf{S}$$

Integrate over a space-time domain

$$\overline{\mathbf{U}}_{i,j,n+1}^{(m,n)} = \overline{\mathbf{U}}_{i,j,n}^{(m,n)} - \frac{\Delta t}{\Delta x} \left(\hat{\mathbf{F}}_{i+1/2,j}^{(m,n)} - \hat{\mathbf{F}}_{i-1/2,j}^{(m,n)} \right) - \frac{\Delta t}{\Delta z} \left(\hat{\mathbf{H}}_{i,j+1/2}^{(m,n)} - \hat{\mathbf{H}}_{i,j-1/2}^{(m,n)} \right) + \Delta t \overline{\hat{\mathbf{S}}}_{i,j}^{(m,n)}$$

- Higher moments use the same FV machinery
- Use local moments for local reconstruction
- Local recon & C-K provides local space-time Taylor polyn
- Space-time polyn closes the scheme for all moments
- Use symbolic math software to generate all derivatives

New Proposed Method: Multi-Moment ADER-Taylor

- Fully Discrete Time Stepping (ADER)
 - Cut out Runge-Kutta stage syncs & comms
- Reduce ADER <u>Expense</u> (Taylor expansion of C-K derivs)
- Multiple modes per cell (as with DG or SE)
- Spatially local (as with DG or SE)
- Time step scales Δx⁻¹ p⁰

- CFL remains at **unity** for <u>all</u> p-refinement

- Most similar to modal DG with Taylor basis
 - Cell evolves value, 1st-deriv, 2nd-deriv, etc.
- Readily applicable to an arbitrary mesh
- HWENO limiters and hybrid schemes apply easily

Computational Aspects Of Multi-Moment ADER

- Increases computation (Good or Bad?)
 - Significantly decreases communication (Good)
 - Legitimately increases resolution (Good)
 - Does not increase time step (Neutral, better than Galerkin)

# Modes	RK-SE syncs per MM-ADER Δt	RK-DG syncs per MM-ADER Δt
2	3.5	7.3
3	7.8	14.3
4	12.6	23.1
5	18.2	33.4
6	24.3	45.3
7	31.5	58.8
8	39.7	73.7

Burger's Equation Shock Simulation: HWENO

Error Comparison between MM-ADER and RKDG

Error for One-Period Sine Wave with 25 Cells after 4 Revolutions

Questions?

- ADER methods notoriously expensive
 - C-K procedure expensive & performed at all points
- ADER-Taylor modification
 - Perform C-K procedure only once at cell center
 - Generates time & mixed space-time derivatives
 - Form space-time Taylor polyn over local space-time domain
 - Sample polyn at points in space and time for fluxes and sources
- Reduces computational constant and complexity
 - In 2-D, C-K needs order n^3 space-time derivatives (n = # modes)
 - Cost of each derivatives grows at up to n²
 - Number of 2-D space-time quadrature points grows with n³
 - Taylor polyn removes the growth with quadrature points

Flux-Based Characteristic Semi-Lagrangian Method

$$\frac{\partial}{\partial t} \begin{bmatrix} \phi \\ \phi u \\ \phi v \end{bmatrix} + \frac{\partial}{\partial x} \begin{bmatrix} \phi u \\ \phi u^2 + \phi^2 / 2 \\ \phi uv \end{bmatrix} + \frac{\partial}{\partial y} \begin{bmatrix} \phi v \\ \phi v u \\ \phi v^2 + \phi^2 / 2 \end{bmatrix} = \begin{bmatrix} 0 \\ -\phi(\Phi_x - fv) \\ -\phi(\Phi_y + fu) \end{bmatrix} \longrightarrow \frac{D}{Dt} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} = \begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix}$$

- Equations reduced to Lagrangian transport
 - Transported quantities are "Characteristic Variables" (CVs)
 - Solve CV transport with semi-Lagrangian method
- Fully-Discrete Finite-Volume Formulation

$$\overline{\mathbf{U}}_{i,j,n+1} = \overline{\mathbf{U}}_{i,j,n} \frac{-\frac{\Delta t}{\Delta x} \left(\hat{\mathbf{F}}_{i+1/2,j} - \hat{\mathbf{F}}_{i-1/2,j} \right)}{+\Delta t \overline{\hat{\mathbf{S}}}_{i,j}} - \frac{\Delta t}{\Delta z} \left(\hat{\mathbf{H}}_{i,j+1/2} - \hat{\mathbf{H}}_{i,j-1/2} \right)$$

Pros and Cons of the FBCSL Method

- Pros
 - Large time step: Limited by Jacobian gradient only
 - My experience, CFL=3 or larger
 - Communication frequency extremely low
- Cons
 - Genuinely multi-dimensional very complicated
 - Often not a problem on orthogonal meshes
 - Definitely a problem on non-orthogonal (i.e., cubed-sphere)
 - Communication volume higher when performed
 - Source term inclusion can be tricky and expensive

Chronological Survey of Atmos Integration Schemes

- Semi-Implicit, Semi-Lagrangian
 - Linearize & split fast waves, solve implicitly
 - Solve slow dynamics with semi-Lagrangian method
 - Large time step, Very heavy network traffic
- Explicit Eulerian Finite-Volume
 - Sub-cycle fast waves with low stencil, cheap method
 - Solve slow dynamics with Eulerian method
 - Time step roughly CFL=3 or 4, Reduced network traffic
- Explicit, Eulerian Galerkin (i.e., Finite Element)
 - Still sub-cycle fast waves
 - Solve slow dynamics with Galerkin method
 - Time step suffers significantly, Minimal network traffic