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Credit for the worthwhile parts
of this talk goes to:

Prof. Yousry Azmy
My advisor

Prof. Dan Cacuci
Sensitivities and data assimilation expert

Prof. John Mattingly
Materials detection expert
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The CSGF is a tremendous opportunity

≈

≈ TA/RA
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My main thesis research is on computational
methods for radiation source location

[based on an illustration by Henry Melville, 1852]
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This talk focuses on the problem of estimating
material quantities with remote sensing

?

Unknown materials

Radiation detector
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In practice, the materials are assumed
to be a set of spherical shells

Uranium

Void

Lead

Aluminum

13.212.9

8.741

[as suggested by Favorite in 2004]
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Bayesian inference is a general approach to
solving inverse problems

p(model | data) ∝ p(data |model) · p(model)

posterior likelihood prior

x

p(
x) =

x

p(
x) ×

x

p(
x)

See Inverse Problem Theory by Albert Tarantola for more details.
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We compute the first and second moments
around the maximum of the posterior

p(~z | C) =
1

p

|2πC|
exp

�

−
1

2
Q(~z)

�

where

~α ≡model variables

~α0 ≡ prior model values
Cα ≡ ~α covariances
~r ≡measurement variables
~rm ≡measurement data
Cm ≡ ~rm covariances
Cαr ≡ ~α-to-~rm “covariances”

~z ≡
�

~α − ~α0

~r − ~rm

�

C ≡
�

Cα Cαr
CT
αr Cm

�

Q(~z) ≡ ~zTC−1~z

[Cacuci 2010]
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Gauss-Newton optimization of Q(~z) searches for
~α∗ with the maximum posterior

~αm+1 = ~αm − λm
�

∇2
αQ(~zm)

�−1 ~∇αQ(~zm)

with the linearization

~r = ~R(~αm) + S(~αm)(~α − ~αm) where [S(~α)]i,j =
∂~Ri

∂αj

�

�

�

�

�

~α

[Kelley 1999]
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The thicknesses of each material are put in ~α,

~α =







loge
~∆ρ

∆ρ0
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The thicknesses of each material are put in ~α,
as well as uncertain material properties

~α =







loge
~∆ρ

∆ρ0

~σt
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The thicknesses of each material are put in ~α,
as well as uncertain material properties

~α =







loge
~∆ρ

∆ρ0

~σt







4 components

~103 components
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We can’t know the input data ~σt perfectly

104 105 106

Energy (eV)

101

102

103

Total cross 
section (/cm)

continuous

multigroup
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Uncertainty in the input helps to explain
modeling discrepancies
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Including ~σt uncertainties, the posterior PDF
gives a reasonable estimate of the thicknesses
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Including ~σt uncertainties, the posterior PDF
gives a reasonable estimate of the thicknesses

0 5 10 15 20 25

Prior DA & LM

7.8 8.0 8.2 8.4 8.6 8.8 9.0 9.2 9.4

Uranium
DA

LM

0 5 10 15 20

Void
DA

LM

0.30 0.35 0.40 0.45 0.50 0.55 0.60

Lead
DA

LM

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Thicknesses Δρ (cm)

Aluminum
DA

LM

~σΔρ/Δρ error /σΔρ

6.7% 0.12

0.75% 11

417% 0.36

72% 1.4

25% 0.44

3.5% 5.8

44% 1.3

10% 8.5
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