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Credit for the worthwhile parts
of this talk goes to:

Prof. Yousry Azmy
My advisor

Prof. Dan Cacuci
Sensitivities and data assimilation expert

Prof. John Mattingly
Materials detection expert




The CSGF is a tremendous opportunity
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My main thesis research is on computational
methods for radiation source location

PLAN OF PRINCIPAL FLOOR.
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[based on an illustration by Henry Melville, 1852]
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This talk focuses on the problem of estimating
material quantities with remote sensing

?

Radiation detector

Unknown materials



In practice, the materials are assumed
to be a set of spherical shells

Aluminum

129 132

[as suggested by Favorite in 2004]



Bayesian inference is a general approach to
solving inverse problems

p(model | data) o« p(data | model) - p(model)

posterior prior

(x)

I
px)
X
p(x)

See Inverse Problem Theory by Albert Tarantola for more details. &=
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We compute the first and second moments
around the maximum of the posterior

1 1
p(Z|C) Jizncl exp [ 2Q(Z)]

where

& = model variables
a° = prior model values 5= [{ff —_{3?0}
Cq = @ covariances F="Im

T = measurement variables C= [CTG Car}
T'm = measurement data Cor Cm
Cm = P covariances Q@) =2'c'z

Car = &-to-T, “covariances”
[Cacuci 2010]



Gauss-Newton optimization of Q(2) searches for
a* with the maximum posterior

Gims1 = Gm = Am (V2Q(Em)) ™ VaQ(Zm)

with the linearization

?=R(Gm)+S(@m)(@—am)  where  [S(&)];;=—

[Kelley 1999]



The thicknesses of each material are put in @,

Ap
G !loge APO]

10/16



The thicknesses of each material are put in &,
as well as uncertain material properties
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The thicknesses of each material are put in &,
as well as uncertain material properties

A
. PogeA_&} 4 components
a=

o ~103 components
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We can’t know the input data &; perfectly
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Uncertainty in the input helps to explain
modeling discrepancies
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Including G; uncertainties, the posterior PDF
gives a reasonable estimate of the thicknesses
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Including G; uncertainties, the posterior PDF

gives a reasonable estimate of the thicknesses
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