High stakes Where's Waldo Watching for nuclear weapon material

Josh Hykes

Department of Nuclear Engineering North Carolina State University

CSGF Annual Conference July 22, 2011

Credit for the worthwhile parts of this talk goes to:

Prof. Yousry Azmy My advisor

Prof. Dan Cacuci Sensitivities and data assimilation expert

Prof. John Mattingly Materials detection expert

The CSGF is a tremendous opportunity

\approx TA/RA

My main thesis research is on computational methods for radiation source location

[based on an illustration by Henry Melville, 1852]

This talk focuses on the problem of estimating material quantities with remote sensing

Radiation detector

Unknown materials

In practice, the materials are assumed to be a set of spherical shells

[as suggested by Favorite in 2004]

Bayesian inference is a general approach to solving inverse problems

See Inverse Problem Theory by Albert Tarantola for more details.

We compute the first and second moments around the maximum of the posterior

$$p(\vec{z} \mid C) = \frac{1}{\sqrt{|2\pi C|}} \exp\left[-\frac{1}{2}Q(\vec{z})\right]$$

where

- $\vec{\alpha} \equiv \text{model variables}$
- $\vec{\alpha}^0 \equiv \text{prior model values}$
- $C_{\alpha} \equiv \vec{\alpha}$ covariances
 - $\vec{r} \equiv$ measurement variables
- $\vec{r}_m \equiv$ measurement data
- $C_m \equiv \vec{r}_m$ covariances
- $C_{\alpha r} \equiv \vec{\alpha}$ -to- \vec{r}_m "covariances"

$$\vec{z} \equiv \begin{bmatrix} \vec{\alpha} - \vec{\alpha}^0 \\ \vec{r} - \vec{r}_m \end{bmatrix}$$
$$C \equiv \begin{bmatrix} C_\alpha & C_{\alpha r} \\ C_{\alpha r}^{\mathsf{T}} & C_m \end{bmatrix}$$
$$Q(\vec{z}) \equiv \vec{z}^{\mathsf{T}} C^{-1} \vec{z}$$

[Cacuci 2010]

Gauss-Newton optimization of $Q(\vec{z})$ searches for $\vec{\alpha}^*$ with the maximum posterior

$$\vec{\alpha}_{m+1} = \vec{\alpha}_m - \lambda_m \left(\nabla^2_{\alpha} Q(\vec{z}_m) \right)^{-1} \vec{\nabla}_{\alpha} Q(\vec{z}_m)$$

with the linearization

$$\vec{r} = \vec{R}(\vec{\alpha}_m) + S(\vec{\alpha}_m)(\vec{\alpha} - \vec{\alpha}_m)$$
 where $[S(\vec{\alpha})]_{i,j} = \frac{\partial \vec{R}_i}{\partial \alpha_j} \bigg|_{\vec{\alpha}_j}$

[Kelley 1999]

The thicknesses of each material are put in $\vec{\alpha}$,

$$\vec{\alpha} = \begin{bmatrix} \log_e \frac{\vec{\Delta \rho}}{\Delta \rho_0} \end{bmatrix}$$

The thicknesses of each material are put in $\vec{\alpha}$, as well as uncertain material properties

$$ec{lpha} = egin{bmatrix} \log_e rac{ec{\Delta
ho}}{\Delta
ho_0} \ ec{\sigma_t} \end{bmatrix}$$

The thicknesses of each material are put in $\vec{\alpha}$, as well as uncertain material properties

$$ec{lpha} = egin{bmatrix} \log_e rac{ec{\Delta
ho}}{\Delta
ho_0} \ ec{\sigma}_t \end{bmatrix} egin{array}{c} 4 \text{ components} \ \sim 10^3 \text{ components} \end{cases}$$

We can't know the input data $\vec{\sigma}_t$ perfectly

Uncertainty in the input helps to explain modeling discrepancies

Including $\vec{\sigma}_t$ uncertainties, the posterior PDF gives a reasonable estimate of the thicknesses

Including $\vec{\sigma}_t$ uncertainties, the posterior PDF gives a reasonable estimate of the thicknesses

References

- Albert Tarantola, *Inverse problem theory and methods for model parameter estimation*, SIAM 2005.
- Jeffrey Favorite, "Using the Schwinger variational functional for the solution of inverse transport problems" *Nuclear Science and Engineering* **146** 2004.
- Dan Cacuci and Mihaela Ionescu-Bujor, "Best-estimate model calibration and prediction through experimental data assimilation–I: mathematical framework" *Nuclear Science and Engineering* **165** 2010.
- CT Kelley, Iterative Methods for Optimization, SIAM 1999.