HPC Allocations at the Oak Ridge Leadership Computing Facility

Rebecca Hartman-Baker
hartmanbakrj@ornl.gov

Judith Hill
hilljc@ornl.gov
ORNL has a long history in High Performance Computing

ORNL has had 20 systems on the Top500 lists

1954 ORACLE
1969 IBM 360/9
1985 Cray X-MP
1992-1995 Intel Paragons
1996-2002 IBM Power 2/3/4
2003-2005 Cray X1/X1E
2007 IBM Blue Gene/P
We have increased system performance by 1,000 times since 2004

Hardware scaled from single-core through dual-core to quad-core and dual-socket, 12-core SMP nodes

- NNSA and DoD have funded much of the basic system architecture research
 - Cray XT based on Sandia Red Storm
 - IBM BG designed with Livermore
 - Cray X1 designed in collaboration with DoD

Scaling applications and system software is the biggest challenge

- DOE SciDAC and NSF PetaApps programs are funding scalable application work, advancing many apps
- DOE-SC and NSF have funded much of the library and applied math as well as tools
- Computational Liaisons key to using deployed systems

<table>
<thead>
<tr>
<th>Year</th>
<th>System</th>
<th>Core Type</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Cray X1</td>
<td>Single-core</td>
<td>3 TF</td>
</tr>
<tr>
<td>2006</td>
<td>Cray XT3</td>
<td>Dual-Core</td>
<td>26 TF</td>
</tr>
<tr>
<td>2007</td>
<td>Cray XT3</td>
<td>Dual-Core</td>
<td>54 TF</td>
</tr>
<tr>
<td>2008</td>
<td>Cray XT4</td>
<td>Quad-Core</td>
<td>119 TF</td>
</tr>
<tr>
<td>2009</td>
<td>Cray XT4</td>
<td>Quad-Core</td>
<td>263 TF</td>
</tr>
<tr>
<td>2009</td>
<td>Cray XT5</td>
<td>Dual-socket SMP</td>
<td>2335 TF and 1030 TF</td>
</tr>
</tbody>
</table>
Our science requires that we advance computational capability 1000x over the next decade

<table>
<thead>
<tr>
<th>Mission: Deploy and operate the computational resources required to tackle global challenges</th>
<th>Vision: Maximize scientific productivity and progress on the largest scale computational problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Deliver transforming discoveries in climate, materials, biology, energy technologies, etc.</td>
<td>• Providing world-class computational resources and specialized services for the most computationally intensive problems</td>
</tr>
<tr>
<td>• Ability to investigate otherwise inaccessible systems, from regional climate impacts to energy grid dynamics</td>
<td>• Providing stable hardware/software path of increasing scale to maximize productive applications development</td>
</tr>
</tbody>
</table>

- Cray XT5 2+ PF Leadership system for science
- OLCF-3: 10-20 PF Leadership system with some HPCS technology
- OLCF-4: 100-250 PF based on DARPA HPCS technology
- OLCF-5: 1 EF
Today, we have the world’s most powerful computing facility

Jaguar

- Peak performance: 2.33 PF/s
- Memory: 300 TB
- Disk bandwidth: > 240 GB/s
- Square feet: 5,000
- Power: 7 MW

Kraken

- Peak performance: 1.2 PF/s
- Memory: 147 TB
- Disk bandwidth: > 50 GB/s
- Square feet: 2,300
- Power: 3 MW

NOAA Gaea

- Peak Performance: 1.1 PF/s
- Memory: 248 TB
- Disk Bandwidth: 104 GB/s
- Square feet: 1,600
- Power: 2.2 MW

Dept. of Energy’s most powerful computer

National Science Foundation’s most powerful computer

National Oceanic and Atmospheric Administration’s most powerful computer
OLCF Center-wide file system: Spider

ORNL’s External login nodes and shared storage provide a single entry for users into a cluster of supercomputers.
OLCF Visualization Resources

• Hardware
 – Lens cluster
 • 32-node, 512-core, 2TB aggregate memory
 • 1 NVIDIA GTX8800 (768MB) & 1 Tesla C1060 (4GB) per node
 – EVEREST powerwall
 • 30’ x 8’ display with 11,520 x 3,072 resolution

• Software
 • Including VisIt, EnSight Gold (DR), ParaView, POV-Ray, AVS/Express, R MPI, IDL, VirtualGL, NX

Every INCITE project is assigned a single “visualization liaison” as a single point of contact for all post-analysis data processing

<table>
<thead>
<tr>
<th>Support visualization tools</th>
<th>Convert data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide parallel data analysis support</td>
<td>Produce publication-ready images</td>
</tr>
<tr>
<td>Perform statistical analyses</td>
<td>Produce movies and animations</td>
</tr>
<tr>
<td>Research new data exploration techniques</td>
<td>Highlight science successes to visitors</td>
</tr>
<tr>
<td>Develop custom visualization tools and algorithms</td>
<td>Large display support</td>
</tr>
</tbody>
</table>
We are delivering Petascale Science Today!
Five applications running over 1 Petaflops
ORNL’s “Titan” 20 PF System Goals

- Similar number of cabinets, cabinet design, and cooling as Jaguar
- Operating system upgrade of today’s Linux Operating System
- Gemini interconnect
 - 3-D Torus
 - Globally addressable memory
 - Advanced synchronization features
- New accelerated node design using GPUs
- 20 PF peak performance
 - 9x performance of today’s XT5
- Larger memory
- 3x larger and 4x faster file system
OLCF-3 node description

- New node for “Cray XE” infrastructure
 - Gemini interconnect
 - AMD Socket G34 processor
- 1 AMD socket G34 processor and 1 NVIDIA GPU per node
- Interlagos uses AMD socket G34 and new “Bulldozer” core
 - DDR3-1600 memory
 - HyperTransport version 3
- NVIDIA “Kepler” accelerator
 - Successor to Fermi

<table>
<thead>
<tr>
<th></th>
<th>Jaguar’s XT5 node</th>
<th>OLCF-3 node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opteron sockets</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Opteron memory (GB)</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Interconnect</td>
<td>Seastar2</td>
<td>Gemini</td>
</tr>
<tr>
<td>Node peak GFLOPS</td>
<td>110</td>
<td>>1500</td>
</tr>
</tbody>
</table>
XT5 Node

Cray XT5 Node Characteristics

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Cores</td>
<td>12</td>
</tr>
<tr>
<td>Peak Performance</td>
<td>125 Gflops/sec</td>
</tr>
<tr>
<td>Memory Size</td>
<td>16 GB per node</td>
</tr>
<tr>
<td>Memory Bandwidth</td>
<td>25.6 GB/sec</td>
</tr>
</tbody>
</table>

- **AMD Opteron 2435** (Istanbul) processors
- **6.4 GB/sec direct connect HyperTransport**
- **16 GB DDR2-800 memory**
- **25.6 GB/sec direct connect memory**
- **Cray SeaStar2+ Interconnect**
I’m sold, how do I get time?

• INCITE – 10M+ CPU-hours

• ALCC – 1M+ CPU-hours

• OLCF Director’s Discretion – <1M CPU-hours

• CSGF – <1M CPU-hours
What is INCITE?

INCITE: Innovative and Novel Computational Impact on Theory and Experiment

Provides awards to academic, government, and industry organizations worldwide needing large allocations of computer time, supporting resources, and data storage to pursue transformational advances in science and industrial competitiveness.

INCITE is jointly run by the ALCF and OLCF, managed by Julia White
INCITE
Innovative and Novel Computational Impact on Theory and Experiment

• Solicits large-scale, computationally intensive research projects
• Open to all scientific & engineering researchers and organizations worldwide
• Provides large computer time and data storage allocations on
 • ALCF IBM BlueGene/P “Intrepid”
 • OLCF Cray XT5 “Jaguar”
Projects suitable for INCITE

<table>
<thead>
<tr>
<th>Does your project satisfy most of the following criteria?</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️ High-impact science and engineering with specific objectives</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>✔️ Computationally intensive runs that cannot be done anywhere else</td>
</tr>
<tr>
<td>✔️ Jobs can use at least 20% of the system</td>
</tr>
<tr>
<td>✔️ Campaign requires tens of millions of CPU hours</td>
</tr>
<tr>
<td>✔️ Computations are efficient on INCITE’s LCF systems</td>
</tr>
</tbody>
</table>

http://www.doeleadershipcomputing.org/
Key questions to ask

• Is another resource more appropriate?
• Is both the scale of the runs and the time demands of the problem of LCF scale?
• Do you need specific LCF hardware?
• Do you have the people ready to do this work?
• Do you have a post-processing strategy?
• Do you have a workflow?

Some of the above characteristics are negotiable, so make sure to discuss atypical requirements with the centers
ALCC

• ASCR Leadership Computing Challenge
• Awards ~30% of time at OLCF, ALCF, NERSC
• Emphasis on high-risk, high-payoff simulations in areas directly related to DOE’s energy mission

http://science.energy.gov/ascr/facilities/alcc/
OLCF Director’s Discretion

• Opportunity to enhance scalability and productivity of scientific codes
• Preparation for INCITE or ALCC

http://www.nccs.gov/user-support/access/
CSGF Allocation Program

• Subset of DD time specifically for CSGF fellows
• Only CSGF fellows can use the allocation for their own research
• Review process differs from usual DD
<table>
<thead>
<tr>
<th></th>
<th>Proposal form: Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Personal Information</td>
</tr>
<tr>
<td>2</td>
<td>Citizenship Status</td>
</tr>
<tr>
<td>3</td>
<td>Mailing Address</td>
</tr>
<tr>
<td>4</td>
<td>Employment Information</td>
</tr>
<tr>
<td>5</td>
<td>Project Information</td>
</tr>
<tr>
<td>6</td>
<td>Project Requirements</td>
</tr>
<tr>
<td>7</td>
<td>Description of Research</td>
</tr>
<tr>
<td></td>
<td>- Research Objectives</td>
</tr>
<tr>
<td></td>
<td>- Project Milestones</td>
</tr>
<tr>
<td></td>
<td>- Significance of Research</td>
</tr>
<tr>
<td></td>
<td>- Computational Approach</td>
</tr>
<tr>
<td></td>
<td>- Job Characterization</td>
</tr>
<tr>
<td></td>
<td>- Application Parallel Performance</td>
</tr>
<tr>
<td></td>
<td>- I/O Requirements</td>
</tr>
<tr>
<td>8</td>
<td>Proprietary and Sensitive Information</td>
</tr>
<tr>
<td>9</td>
<td>Export Control</td>
</tr>
<tr>
<td>10</td>
<td>Comments and Questions</td>
</tr>
</tbody>
</table>

http://www.nccs.gov/user-support/access/project-request/
Starting the proposal

• **Personal Information**
 – Identify as CSGF in HPC Experience biography

• **Citizenship Status**

• **Mailing Address**
 – So we can send you a Fob!

• **Employment Information**

• **Project Information**
 – The PI must be you and only you!
 – Funding source: select ASCR in addition to any other funding sources
Project Requirements

• **Up to 1 million CPU hours available - Mind the units!**
 - Processor (core) hours for system
 - Disk storage in gigabytes for both Home and Scratch space (see Sec 7)
 - Mass (tape) storage in gigabytes or terabytes (specify) (see Sec 7)

• **Project role:** choose “Other Project Role” and put in CSGF

• **Project Duration:** 12 months

• **OLCF Support:** Fundamental user assistance (probably)
Description of Research: Research Objectives, Milestones, Significance

• Audience
 – Computational-science-savvy senior scientists/engineers, and faculty
 – Not everyone will be well versed in your approach

• Story elements
 – What the problem is, and its significance
 – Key objectives, key simulations/computations, milestones
 – Approach to solving the problem, its challenging aspects, preliminary results
 – Impact of a successful computational campaign — the big picture
 – Reasons why it is important to carry out this work now
Description of Research: Software Information

List all software application packages/suites to be used (Note: Long lists may reduce credibility)

– What will be used to set up computations?
– What are the codes for the main simulation/modeling?
– What will be used to analyze results?

• ECCN number?
• Open source? Export controlled?
• Software application
Description of Research: Computational approach

• Programming languages, libraries and tools used
 – Describe what you will need and what you will port

• Description of underlying formulation
 – Don’t assume reviewers know all the math
 – Make it clear that the code you plan to employ is the correct tool for your research plan
 – If you plan to use a private version of a well-known code, delineate the differences
Description of Research: Job Characterization/Parallel Performance

- What jobs are you going to run?
- Why do you need this unique resource?
- Do you have evidence of scalability?

<table>
<thead>
<tr>
<th></th>
<th>WEAK SCALING DATA</th>
<th>STRONG SCALING DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase problem size as resources are increased</td>
<td>Increase resources (nodes) while doing the same computation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of processors</th>
<th>Time to solution (m) Actual</th>
<th>Ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>4800</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>9600</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>19200</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>38400</td>
<td>10.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of processors</th>
<th>Time to solution (s) Actual</th>
<th>Ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2400</td>
<td>5,000</td>
<td></td>
</tr>
<tr>
<td>4800</td>
<td>4,000</td>
<td></td>
</tr>
<tr>
<td>9600</td>
<td>3,000</td>
<td></td>
</tr>
<tr>
<td>19200</td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td>38400</td>
<td>1,000</td>
<td></td>
</tr>
</tbody>
</table>
Description of Research: I/O

• **Restart I/O** - Application initiated program restart data
 - I/O technique used, e.g., MPI I/O, HDF5, raw
 - Number of processors doing I/O, number of files
 - Sizes of files and overall dump
 - Periodicity of the checkpoint process

• **Analysis I/O** - Application written files for later analysis
 - I/O technique used, e.g., pNetCDF, pHDF5
 - Number of processors doing I/O, number of files
 - Sizes of files and overall dump

• **Archival I/O** - Data archived for later use/reference
 - Number and sizes of files
 - Retention length
 - If archived remotely, the transport tool used, e.g., GridFTP
Finishing the Application

• Proprietary and Sensitive Information
 – Ideal answers:
 • Does this project generate publishable data? Yes
 • Does this project use proprietary data? No
 • Does this project generate proprietary data? No
 • Does this project use or generate sensitive or restricted information? No

• Export Control
 • Does the proposed project involve any of the following areas? No
 • Does the proposed project use and/or create proprietary information, intellectual property, licensing, or will utilize controlled technology in any of these categories in pursuit of the project objectives? No
 • Are the proposed project and its intended subject matter deliverables considered Fundamental Research or Publicly Available Information as under National Security Decision Directive (NSDD) 189? Yes

• Comments and Questions
 • Do you agree to provide periodic updates of research accomplishments? Yes
Final checks

• Write your research description in another editor and cut and paste into the form (you can’t save the form and return later)

• Required fields must be completed for the form to be successfully submitted

• After submitting your proposal, you will not be able to edit it

http://www.nccs.gov/user-support/access/project-request/

Submit
Iterative Review Process

Discuss the efficacy of your idea with one of us

Submit application through OLCF website

• Is it more appropriate for another resource?

• We review your application

Iterate with us until proposal is acceptable

• You are an OLCF user!

Seek an alternate resource (we can advise)

http://www.nccs.gov/user-support/access/project-request/
Reporting Requirements:
- A final report highlighting the accomplishments with your allocated time is required

Provide highlights on significant science/engineering accomplishments as they occur

Submit annual renewal request

Complete annual surveys

Be good citizen on the computers

Use the resources for the proposed work
It is a small world...

- OLCF resources will continue to grow as researchers around the world require larger systems for high-impact results.
- Let the science agency that funds your work know how significant the OLCF will be to your work.
- Contact us if you have questions: we want to hear from you.
Relevant links

INCITE Program
http://www.doeleadershipcomputing.org/

ALCC
http://science.energy.gov/ascr/facilities/alcc/

Oak Ridge Discretionary Program
http://www.nccs.gov/user-support/access/project-request/
Contacts

For details about the INCITE program:

www.doeleadershipcomputing.org
INCITE@DOEleadershipcomputing.org

For details about the OLCF:

www.olcf.ornl.gov
help@nccs.gov, 865-241-6536

Contact Us:
Rebecca Hartman-Baker, hartmanbakrj@ornl.gov, 865-241-8989
Judith Hill, hilljc@ornl.gov, 865-241-1731