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Cosmology

(graphic by: NASA/WMAP Science Team)
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Why Inflation?

Big-Bang cosmology is great, it explains many observations from
nucleosynthesis, explains the expanding universe, etc.

But, it does not explain everything; there are still mysteries:

The isotropy (homogeneity) of the entire observable universe

The extreme flatness of the observable universe

The very-nearly-scale-free nature of the initial density-perturbation
power spectrum

And other more-subtle details (like certain statistical features of
the CMB)
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Overview

The distinguishing signatures of individual inflation models are often
produced by processes in strongly-nonlinear regimes:

Density perturbations from preheating...

and the resulting gravitational radiation.

and slowly-decaying, localized features such as oscillons.

Phase transitions and associated processes, such as...

bubble nucleation and collisions.

Primordial black-hole formation
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Preheating: What is it?

Energy in the inflaton field needs to be transferred into the fields for
normal (standard model) matter and energy (quarks, gluons,
electrons, photons, etc.).

After preheating begins, inflaton (low-k) occupation numbers are
huge, so perturbation theory is ineffective; we need to deal directly
with the full nonlinear process.

For certain models, this nonperturbative phase is necessary to ensure
that reheating completes.

Coupled modes can enter resonance bands which cause resonant
amplification.
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Modeling Preheating

Model the inflaton-matter system as a set of coupled scalar fields.

Use classical field theory (as an approximation).

�φi = ∂V
∂φi , V is a nonlinear function of all of the {φi}.
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FRW Background

In an FRW background:

ds2 = −dt2 + a2(t) d~x2 (1)

The field equations of motion become:

φ̈i + 3Hφ̇i − ∆

a2
φi +

∂V

∂φi
= 0 (2)
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V (φ, ψ) = 1
2m

2φ2 + 1
2g

2φ2ψ2

Using the potential:

V (φ, ψ) =
1

2
m2φ2 +

1

2
g2φ2ψ2 (3)

The equation of motion for φ is:

φ̈+ 3Hφ̇− 1

a2
∇2φ+ m2φ+ g2ψ2φ = 0 (4)

In terms of Fourier modes:

φ̈k + 3Hφ̇k +

(
k2

a2
+ m2 + g2ψ2

)
φk = 0 (5)
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PSpectRe

Easther, Finkel and Roth (2010) [arXiv:1005.1921, published JCAP 2010]

Evolves fields in Fourier space using a second/fourth-order scheme.

No finite-difference approximations for the derivative terms.

Requires lots of FFTs to evaluate the nonlinear terms (uses FFTW or
Intel’s MKL).

Parallelized using OpenMP.

Naturally integrates with Fourier-space hTT
µν evolution.
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4th Order vs 2nd Order

50 100 150 200

-0.0015

-0.0010

-0.0005

0.0005

0.0010

Figure: PSpectRe runs at 323 (L = 2 and the time step is 0.005). The red line
uses the Verlet integrator, blue shows the Runge-Kutta results.
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Padding (Mode-Aliasing Mitigation) Helps

50 100 150 200

-0.00006

-0.00004

-0.00002

0.00002

0.00004

Figure: PSpectRe: Red is unpadded, blue is padded by a factor of 2.
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Compare with Defrost: Energy Conservation

50 100 150 200

-0.00004

-0.00003

-0.00002

-0.00001

Figure: Runs with 2563 points and L = 10 (for Defrost’s default model).

PSpectRe’s convergence for equation-of-state observables is better than
Defrost’s too (see the paper).
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Oscillon?

A quasi-periodic, localizable feature of a solution to a nonlinear field
theory.

Similar to a soliton, but not protected by a symmetry of the
Lagrangian.

Mustafa Amin (MIT), our collaborator, has done some of the best
recent theory work.
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Sextic Oscillon Potential

V (ϕ) =
1

2
m2ϕ2 − λ

4
ϕ4 +

g2

6m2
ϕ6 (6)

with λ > 0 and (λ/g)2 � 1. Assuming spherical symmetry and ignoring
expansion gives:

∂2
t ϕ− ∂2

r ϕ−
2

r
∂rϕ+ m2ϕ− λϕ3 +

g2

m2
ϕ5 = 0 (7)
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Sextic-Potential Oscillon Profiles

Assuming a bounded, periodic solution gives an ODE which can be
(approximately) solved to yield the radial profile of an oscillon. It is a
one-parameter family of curves.

Figure: Oscillon profiles in the sextic potential
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Why Do We Care?
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Figure: The fraction of the energy density of the universe after inflation which is
in oscillons. The orange and blue curves are from PSpectRe runs (a lot of them)
at 2563 and 3843 respectively. The black dots are 10243 MPI Defrost runs.
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A Universe of Oscillons

Simulation using PSpectRe at L = 200 and N = 256.
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A Universe of Oscillons (cont.)
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A Universe of Oscillons (cont.)
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Conclusion

PSpectRe is a pseudo-spectral code, and it often works better than
the competition.

PSpectRe is good for localized objects (like oscillons).

Oscillons appear in many theories of inflation, and affect the evolution
history of the universe.
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The End

“Begin at the beginning and go on till you come to the end: then stop.” -
Lewis Carroll, Alice’s Adventures in Wonderland.
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H = 0 and the Mathieu Equation

When H = 0, substitute:

q =
g2ψ2

4m2
, A =

k2

m2
+ 2q, z = mt (8)

Yielding a Mathieu equation:

φ′′k + (A− 2q cos(2z))φk = 0 (9)

where primes denote differentiation with respect to z . All solutions:

φk ∝ f (z)e±iµz (10)
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Solution Stability

m ≥ 0 implies that A ≥ 2q. φk grows exponentially if µ has an imaginary
part:

0 2 4 6 8

0

5

10

15

Figure: The imaginary part of the Mathieu critical exponent. Outside the heavy
black lines the exponent is real-valued. The diagonal line is A = 2q.
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Other Codes

Treating the full system, including the backreaction from other fields,
requires 3-D numerical simulation. We’re neither the first nor the last...

LatticeEASY: Felder and Tkachev (2000)

DEFROST: Frolov (2008)

PSpectRe: Easther, Finkel and Roth (2010)

HLattice: Huang (2011)
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FFT

FFT = Fast Fourier Transform (transforms from (discrete) position space
to “frequency space”)

Φ(~k) =
∑
~r

φ(~r)e−i~k·~r , (11)

φ(~r) =
1

N3

∑
~k

Φ(~k)e i~k·~r . (12)

FFT evaluates these using a recursive decomposition: O(n log n).
φ is real: φ(~r) = φ(~r)?, so Φ(~k) = Φ(−~k) and the number of free
parameters matches in both representations.
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Derivatives in Fourier Space

Each derivative operator brings down a factor of −ik , so:

∇2 → ~k · ~k

And so (for example):∫
box
|∇φ|2 =

1

N3

∑
~k space

|~k |2|Φ(~k)|2 (13)
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A Complication: Mode Aliasing

In the discrete case, there is a complication:

A discrete (upper-half) mode k corresponds not only to the
continuum mode k , but also to the continuum mode k − 2πN

L .

PSpectRe uses the convention that the first N
2 + 1 Fourier-space

components in any dimension represent the modes 0, . . . , πN
L and the

remaining N
2 − 1 points represent the modes −π(N−2)

L through −2π
L .

This works if the modes π(N+2)
L through 2π(N−1)

L are negligible,

compared to the modes −π(N−2)
L through −2π

L .
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Nonlinear Terms

Terms such as χ2φ are implemented as:

(Optionally) Pad the Fourier-space grid.

Perform an inverse FFT (transform to position space).

Compute the nonlinear operation.

Perform an FFT (transform to Fourier space).

(Optionally) Unpad the Fourier-space grid.

Padding in Fourier space is equivalent to performing a polynomial fit using
all of the available data points and then filling in using interpolation. It is
a bit tricky to implement when using a conjugate-symmetry-reduced
storage layout; the details are in the paper.
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Energy Conservation?

GR’s dynamic metric does not generally allow for a conserved energy. In
this case, the FRW background is changing, but homogeneous, and so we
have (the averaged Friedmann equation):

〈ρ〉
3H2

− 1 (14)

And it should be as good as the homogeneity assumption (parts in 107).
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Monodromy Inflation

V (φ) = m2M2

[(
1 +

φ2

M2

)α
− 1

]
(15)

Potentials for which V (φ) ∼ φ2α with α < 1 at large φ arise in a wide
variety of string and supergravity scenarios!

Quartic inflation (α = 2) is ruled out, and even quadratic inflation
(α = 1) is somewhat disfavored, relative to models with α < 1.
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Resonance and Oscillons in Monodromy Inflation

Oscillons can form in potentials of the form:

V (φ) =
m2φ2

2
+ U(φ) (16)

where U(φ) < 0 for some interval of the field φ.

For our monodromy model this requirement is satisfied if α < 1.

If M is significantly sub-Planckian, U(φ) is both negative and
non-vanishing as the field oscillates about φ = 0. This yields
resonance and oscillon production!
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Monodromy Oscillons!

Figure: The fractional energy density in oscillons after a monodromy-inflation
preheating phase as a function of α and β.
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Metric-Perturbation Evolution

Write the metric as:
gµν = ĝµν + hµν (17)

Then metric perturbation obeys:

�hαβ− ĝαβ�h + h;αβ + 2R̂µν
αβhµν −h;µ

αµ;β−h;µ
βµ;α + ĝαβh

;µν
µν = −16πGδTαβ

(18)
which simplifies after a gauge is chosen.
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Gravitational-Wave Tµν

The stress-energy tensor associated with gravitational radiation is given by:

Tµν =
1

32πG

〈
hij ,µh

ij
,ν

〉
(19)

The energy density is given by:

ρgw =
1

32πG

〈
hij ,0h

ij
,0

〉
=
∑
i ,j

1

32πG

〈
h2
ij ,0

〉
(20)

The fractional contribution to the overall density per logarithmic interval
in wave-number:

dΩgw

d ln k
=

1

ρcrit

dρ

d ln k
=

πk3

3H2L2

∑
i ,j

|hij ,0(k)|2 (21)
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Code by Easther, Giblin and Lim

Easther, Giblin and Lim (2006, 2007, 2008), published work on preheating
models. Bubble-collision and Oscillon calculations in progress.

Evolves hTT
µν in Fourier space given real-space inputs.

Has stability issues with high-frequency noise.

No scalar or vector pieces, no back-reaction.
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What Others Do

So what does everyone else do? Generally, they estimate based on
calculating TTT

µν . There are different techniques:

Estimate by summing ρgw produced per dt. (Easther and Lim, 2006).

Estimate by integrating approximate Green’s function for hTT
µν (valid

only for modes well inside the horizon). (Dufaux, et al., 2007).

Estimate by integrating a Green’s function for hTT
µν assuming a

particular expansion history (matter or radiation dominated, etc.).
(Price and Siemens, 2008).

Assuming Gaussian initial conditions and that (mean) vorticity
vanishes, evolve uncoupled hij (back-reaction included, approx. effect
unknown). (Garćıa-Bellido, et, al., 2008).
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Results for Preheating are Similar

Figure: Plot by Price and Siemens showing their results along with results by:
Easther, Giblin and Lim; Dufaux, et al.; and Garćıa-Bellido, et, al.
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General Features of Preheating Spectrum

General features of the peak in the gravitational-wave spectrum from
preheating:

GUT-scale inflation: MHz-GHz. Inflation at 10 TeV: 10−2 Hz. Peak
≈ 1/(inflation scale).

Most power occurs in a narrow frequency band, rapid-drop-off k3

high-frequency tail.

The higher the inflationary scale the more post-inflation growth takes
place and the smaller the wavelength of the resonant modes.

Maximal production:
dΩgw

d ln(k) ≈ 10−5, 10−10 today.
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PSpectRe Does Quite Well!

Figure: PSPectRE+hij at 1283 (dots) vs. LatticeEasy+hij at 1283, 2563, 5123.
The PSpectRe+hij run beats the largest LatticeEasy+hij run (which had been
used for publication).
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Bubble Collisions

V (φ) has two or more metastable minima with positive vacuum
energy.

Typical regions undergo de Sitter expansion with H ∼
√

V (φ1)/Mp

(Mp is the reduced Plank mass, φ1 is the location of the minimum).

Small regions may tunnel to another minimum φ2, V (φ2) < V (φ1),
forming a “bubble.”
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Example Potential for Bubble Collision Scenario

Figure: Diagram of V (φ) supporting bubble collisions scenarios. Figure from
Easther, et al., 2009
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Primordial Black Holes

Formed after inflation if power spectrum has a small-scale peak.

Produce Hawking radiation as they decay, including gravitational
radiation. Could cause a matter-dominated phase.

For average masses larger than ≈ 1 gram, constrained by
nucleosynthesis, x-ray background, dark-matter abundance.
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LatticeEASY

LatticeEASY, Felder and Tkachev (2000).

The “industry standard.”

Second-order staggered-leapfrog code.

Code is functional and well documented.

Not performance optimized.
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DEFROST

DEFROST, Frolov (2008).

Second-order Perring-Skyrme-like scheme (plug in a temporal stencil
and solve).

Code is clean, although not modular, and well documented.

Careful implementation of initial conditions.

Tuned and optimized for performance.
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HLattice

HLattice, Huang (2011).

Claims to do scalar fields plus metric perturbations.

Uses 6th-order spatial stencil and 4th-order RK integrator.

Preprint posted on Feb. 1, so I’ll have more to say after I’ve tried it...
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MPI Defrost

Based on Frolov’s Defrost code, modified by changing array indexing,
adding MPI calls, etc.

Used for some 10243 oscillon calculations.
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Code using Variational Integrator

Based on Marsden and West’s variational integration scheme. Uses
Lagrangian directly.

Automatically conserves energy, momentum and any other
symmetry-generated conserved currents (to the precision of the
nonlinear solver).

Can use (discretized) continuum equations of motion to check the
distance to the continuum limit (convergence).

Parallelized using MPI, used PETSc’s parallel SNES (nonlinear solver).
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