First-principles Monte Carlo simulations of hydrogen-bonding fluids

DOE CSGF Conference Matthew J. McGrath July 14-16, 2009

Projects

- First principles Monte Carlo simulations
 - Phase equilibria of water
 - Nucleation of super-heated hydrogen fluoride vapor
 - Phase equilibria of methanol
 - Henry's law constant of hydrogen chloride in water
- Monte Carlo simulations with empirical potentials
 - Water confined in nanogaps
 - Crystallization of tetrolic acid
 - Solvation environment of coumarin 102 in acetonitrile/ water mixtures

Phase Equilibria of Water

- Motivation
- Background
 - CP2K/Quickstep
 - Monte Carlo algorithms
- Canonical ensemble simulations
- Isobaric-isothermal ensemble simulations
- Gibbs ensemble simulations

Motivation

- Inexpensive empirical models work well for specific properties or state points
- In principle, quantum mechanical potentials are fully transferable between molecules and provide enough flexibility to describe reactive systems
- Phase equilibria have previously been shown to be extremely sensitive to the interaction potential, and therefore present a good test of a model's accuracy

CP2K/Quickstep

- CP2K is an internationally developed software suite for particle-based simulation
- Quickstep is a near-linear scaling algorithm for computing the energy/forces of a system via Kohn-Sham density functional theory

$$E[\rho] = T_{\rm e}[\rho] + V_{\rm ne}[\rho] + V_{\rm ee}[\rho] + E_{\rm xc}[\rho]$$

• Quickstep uses a mixed basis set (atom-centered Gaussians to represent the KS orbitals and planewaves to expand the electronic density)

http://cp2k.berlios.de

Monte Carlo Algorithms

- Monte Carlo techniques sample the partition function of a specific ensemble
- Metropolis *et al*. [1953] introduced importance sampling
 - Attempt a move (change the system)
 - Accept or reject this move based on the pseudo-Boltzmann weight

Water in the Gibbs Ensemble

- Knowledge of the vapor-liquid coexistence curve (VLCC) is of great importance for molecular simulation
- Only one previous study attempted to compute thermodynamic properties of water
- Phase equilibria provide a sensitive test of the accuracy of density functionals
- One pair of data points for the VLCC took approximately 70 days using 100 processors on Thunder at LLNL

Water in the Gibbs ensemble

- Translations, rigid-body rotations around the center of mass, conformational changes for thermal equilibrium
- Volume exchanges for mechanical equilibrium
- Molecular swaps for phase equilibrium

Acknowledgement: Will Kuo, LLNL

Coexistence Curves

Molecular Dipole Moments

BLYP

PBE

Colored according to molecular dipole in intervals of 0.1 D

Water in the Gibbs Ensemble Conclusions

- BLYP-GTH-TZV2P-1200 gives a description of water that is underbound, while PBE-GTH-TZV2P-1200 is overbound
- Phase equilibrium suffers from a significant basis set dependence
- The molecular dipole moments display a high degree of heterogeneity at all temperatures, regardless of the density functional used

Super-heated Hydrogen Fluoride Vapor

- Hydrogen fluoride forms very strong hydrogen bonds
- Extensive aggregation at low temperatures in the vapor phase
- Empirical model simulations show rings and branched clusters, while quantum calculations show only linear aggregates

Aggregation-Volume-Bias Monte Carlo (AVBMC)

- Enhances the sampling of cluster formation and destruction
- Algorithm
 - Select a molecule, *i*, to be swapped
 - Select a target molecule, j
 - With a probability of P_{bias} , swap i into the bonded region of j (defined as a shell centered on j with inner r_{\min} and outer radius r_{\max})

- Move acceptance is determined by energy difference, "in" and "out" volumes, and P_{bias}
- Combine with CBMC to increase efficiency

Hydrogen Fluoride

T = 350 K

Hydrogen Fluoride - Cluster Definition

- All members of a cluster are connected via a hydrogen bonding network
- A "hydrogen bond" is determined by a combined distance/ angle criterion

Hydrogen Fluoride - Cluster Size Distribution

Hydrogen Fluoride - Bond Lengths and Molecular Dipoles

Hydrogen Fluoride - Conclusions

- Plane-wave based simulation codes are not ideal for studying vapor phases
- Increased aggregation is seen at lower temperatures, with clusters up to the septamer
- Density functional theory does produce clusters with non-linear architectures
- Several molecular properties show dependence on the cluster size

Acknowledgements

- J. Ilja Siepmann and the members of the Siepmann group
- Drs. Chris Mundy and Will Kuo, LLNL
- CP2K developers
- 3M Foundation Fellowship
- DOE Computational Science Graduate Fellowship

Water in the Gibbs Ensemble System Size Effects

Normal boiling points:

Size	T _b [K]
32	364 +/- 2
64	364 +/- 2
96	366 +/- 2
128	365 +/- 2
256	364 +/- 1

TIP4P force field with LJ tail corrections and Ewald sum