
Stability and Stegotons
Understanding Waves through Computation

David I. Ketcheson

CSGF Annual Meeting

July 15, 2009

D. Ketcheson (KAUST) July 15, 2009 1 / 20



Acknowledgments

Randy LeVeque (U. Washington)

Principal funding:

Dept. of Energy Computational Science Fellowship

Additional funding:

Dept. of Homeland Security Graduate Fellowship

AFOSR

King Abdullah University of Science & Technology

D. Ketcheson (KAUST) July 15, 2009 2 / 20



A private research university made possible by a generous gift from
King Abdullah

”The World’s First Computational Science University”

One quarter of faculty devoted entirely to Mathematical and
Computational Science (chaired by David Keyes)

World’s best visualization facility

14th fastest supercomputer

Generous research funding that is being spread around the world
(Stanford, MIT, Berkeley, Caltech, UT-Austin, Cornell, UCSD, Texas
A&M, Georgia Tech, Penn State, Woods Hole, ...)

Partnerships with IBM, Boeing, Dow, GE, Schlumberger, ...

D. Ketcheson (KAUST) July 15, 2009 3 / 20



A private research university made possible by a generous gift from
King Abdullah

”The World’s First Computational Science University”

One quarter of faculty devoted entirely to Mathematical and
Computational Science (chaired by David Keyes)

World’s best visualization facility

14th fastest supercomputer

Generous research funding that is being spread around the world
(Stanford, MIT, Berkeley, Caltech, UT-Austin, Cornell, UCSD, Texas
A&M, Georgia Tech, Penn State, Woods Hole, ...)

Partnerships with IBM, Boeing, Dow, GE, Schlumberger, ...

D. Ketcheson (KAUST) July 15, 2009 3 / 20



A private research university made possible by a generous gift from
King Abdullah

”The World’s First Computational Science University”

One quarter of faculty devoted entirely to Mathematical and
Computational Science (chaired by David Keyes)

World’s best visualization facility

14th fastest supercomputer

Generous research funding that is being spread around the world
(Stanford, MIT, Berkeley, Caltech, UT-Austin, Cornell, UCSD, Texas
A&M, Georgia Tech, Penn State, Woods Hole, ...)

Partnerships with IBM, Boeing, Dow, GE, Schlumberger, ...

D. Ketcheson (KAUST) July 15, 2009 3 / 20



A private research university made possible by a generous gift from
King Abdullah

”The World’s First Computational Science University”

One quarter of faculty devoted entirely to Mathematical and
Computational Science (chaired by David Keyes)

World’s best visualization facility

14th fastest supercomputer

Generous research funding that is being spread around the world
(Stanford, MIT, Berkeley, Caltech, UT-Austin, Cornell, UCSD, Texas
A&M, Georgia Tech, Penn State, Woods Hole, ...)

Partnerships with IBM, Boeing, Dow, GE, Schlumberger, ...

D. Ketcheson (KAUST) July 15, 2009 3 / 20



A private research university made possible by a generous gift from
King Abdullah

”The World’s First Computational Science University”

One quarter of faculty devoted entirely to Mathematical and
Computational Science (chaired by David Keyes)

World’s best visualization facility

14th fastest supercomputer

Generous research funding that is being spread around the world
(Stanford, MIT, Berkeley, Caltech, UT-Austin, Cornell, UCSD, Texas
A&M, Georgia Tech, Penn State, Woods Hole, ...)

Partnerships with IBM, Boeing, Dow, GE, Schlumberger, ...

D. Ketcheson (KAUST) July 15, 2009 3 / 20



A private research university made possible by a generous gift from
King Abdullah

”The World’s First Computational Science University”

One quarter of faculty devoted entirely to Mathematical and
Computational Science (chaired by David Keyes)

World’s best visualization facility

14th fastest supercomputer

Generous research funding that is being spread around the world
(Stanford, MIT, Berkeley, Caltech, UT-Austin, Cornell, UCSD, Texas
A&M, Georgia Tech, Penn State, Woods Hole, ...)

Partnerships with IBM, Boeing, Dow, GE, Schlumberger, ...

D. Ketcheson (KAUST) July 15, 2009 3 / 20



Wave Equations

Hyperbolic PDEs describe
numerous phenomena:

Geophysical

Earthquakes
Tsunamis
Volcanic eruptions

Biological

Ultrasound therapy
Lithotripsy/shock-wave
therapy
Shell shock

Engineering

Bandgaps
Lenses
Metamaterials
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The Importance of High Order Accuracy

Truncation error E ≈ Chp (h� 1)

Higher order =⇒ smaller error, but...

higher order methods are more expensive for any fixed gridsize h

Tradeoff between refining grid (h) and increasing order (p)

As h gets smaller, higher order pays off more

Thus high order becomes essential as

Computers get faster

Memory becomes limiting factor

Error tolerances get smaller

Multiscale, 3D problems become the norm
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I think there will be always a demand for high order schemes, because you
will always push the computers to the limit...

...In a high order scheme you can get, with fewer resources, more accurate
results...

...The issue about high order methods is robustness. When the method is
high order and sophisticated, it‘s less robust...
...if the second order scheme goes unstable once every four days, the high
order scheme goes unstable once every two days, and you have to fix it.
I think that this is something basic that you cannot get rid of. This is the
trade off. So, you have to choose.

–David Gottlieb
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High Order Discretization: The Method of Lines

Ut + f (U)x = 0

First discretize the spatial derivatives to obtain a system of ODEs:

du

dt
= F (u).

then apply a numerical ODE solver to obtain a fully discrete system:

un+1
i = G (un)

PDEs =⇒ ODEs =⇒ algebraic equations

Decouples spatial and temporal accuracy

Alternative: Cauchy-Kovalevskaya generalization of Lax-Wendroff
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Shocks lead to Oscillations

Nonlinear wave equations naturally develop discontinuities (’shocks’)

Godunov’s Theorem: even for the advection equation, any linear
numerical method that is more than first order accurate will develop
oscillations when approximating a shock.

Higher order methods are even more prone to oscillations

Burger’s equation: ut +
(

1
2u2
)
x

= 0
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Avoiding Oscillations

Total Variation Diminishing

The total variation semi-norm:

||u||TV =

∫
|ux |dx

TVD: ||u(t + ∆t)||TV ≤ ||u(t)||TV.

TVD =⇒ no spurious oscillations
TVD =⇒ compact space =⇒ convergence

BUT

TVD methods are at most 2nd order accurate
(1st order accurate in 2D)

Hence much focus has shifted to non-oscillatory methods
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Other constraints: Positivity

Consider the equations of inviscid, compressible flow:

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

Et + (u(E + p))x = 0.

Physics says:

ρ ≥ 0

p ≥ 0

E ≥ 0

=⇒ Violation leads to unphysical states
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Dodging Godunov’s Theorem

The Challenge: Develop high-order numerical methods that avoid
oscillations and/or preserve positivity.

The Solution: Use methods that are nonlinear, even when applied to
linear equations.

The Difficulty: Very hard to directly analyze high-order full
discretizations.

Note that one must still sacrifice either formal high order or strict
non-oscillatory property (or both) to go beyond 2nd order and 1D.

1970 1980 1990 2000

MUSCL PPM ENO WENO

RKDG

TVD Methods Non-oscillatory Methods
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The Method of Lines: Stability

Rather than analyze the full discretization directly, design a spatial
discretization that satisfies the required bound with Forward Euler
integration under an appropriate timestep restriction.

||un + ∆tF (un)||TV ≤ ||un||TV 0 ≤ ∆t ≤ ∆tFE (∗)

Then if (∗) is integrated by a strong stability preserving (SSP) time
integrator, the numerical solution satisfies

||un+1||TV ≤ ||un||TV

when applied to any system satisfying (∗) under an appropriate timestep
restriction.

Decouples spatial and temporal stability analysis

D. Ketcheson (KAUST) July 15, 2009 12 / 20



Wave Propagation Methods

Traditional flux-differencing methods for hyperbolic PDEs are tailored to
the conservation law:

qt + f (q)x = 0.

Wave propagation methods are more general and easily handle
non-traditional problems. . .

Spatially varying flux:

qt + f (q, x)x = 0

Near-equilibrium systems:

qt + f (q)x = S(q) with f (q)x ≈ S(q)

Quasilinear systems not in conservation form:

κ(x)qt + A(q, x)qx = 0

Any combination of the above

D. Ketcheson (KAUST) July 15, 2009 13 / 20



Wave Propagation Methods

Traditional flux-differencing methods for hyperbolic PDEs are tailored to
the conservation law:

qt + f (q)x = 0.

Wave propagation methods are more general and easily handle
non-traditional problems. . .

Spatially varying flux:

qt + f (q, x)x = 0

Near-equilibrium systems:

qt + f (q)x = S(q) with f (q)x ≈ S(q)

Quasilinear systems not in conservation form:

κ(x)qt + A(q, x)qx = 0

Any combination of the above

D. Ketcheson (KAUST) July 15, 2009 13 / 20



Wave Propagation Methods

Traditional flux-differencing methods for hyperbolic PDEs are tailored to
the conservation law:

qt + f (q)x = 0.

Wave propagation methods are more general and easily handle
non-traditional problems. . .

Spatially varying flux:

qt + f (q, x)x = 0

Near-equilibrium systems:

qt + f (q)x = S(q) with f (q)x ≈ S(q)

Quasilinear systems not in conservation form:

κ(x)qt + A(q, x)qx = 0

Any combination of the above

D. Ketcheson (KAUST) July 15, 2009 13 / 20



Wave Propagation Methods

Traditional flux-differencing methods for hyperbolic PDEs are tailored to
the conservation law:

qt + f (q)x = 0.

Wave propagation methods are more general and easily handle
non-traditional problems. . .

Spatially varying flux:

qt + f (q, x)x = 0

Near-equilibrium systems:

qt + f (q)x = S(q) with f (q)x ≈ S(q)

Quasilinear systems not in conservation form:

κ(x)qt + A(q, x)qx = 0

Any combination of the above

D. Ketcheson (KAUST) July 15, 2009 13 / 20



Wave Propagation Methods

Traditional flux-differencing methods for hyperbolic PDEs are tailored to
the conservation law:

qt + f (q)x = 0.

Wave propagation methods are more general and easily handle
non-traditional problems. . .

Spatially varying flux:

qt + f (q, x)x = 0

Near-equilibrium systems:

qt + f (q)x = S(q) with f (q)x ≈ S(q)

Quasilinear systems not in conservation form:

κ(x)qt + A(q, x)qx = 0

Any combination of the above

D. Ketcheson (KAUST) July 15, 2009 13 / 20



Finite Volume Godunov-type Methods

Solution represented by cell
averages Qi

Each cell interface represents
a Riemann problem

Flux-differencing:

Qn+1
i = Qn

i +

∆t

∆x

(
F (xi− 1

2
)− F (xi+ 1

2
)
)

Wave propagation:

Qn+1
i = Qn

i +

∆t

∆x

(
W+

i− 1
2

+W−
i+ 1

2

)

b b b b b

xi+ 1
2

b

xi+ 1
2

q
∆q
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The Best of Both Worlds

Clawpack:
2nd order

wave propagation

High order
flux differencing

(e.g. WENO + RK)

High order
wave propagation

Implemented in the SharpClaw software package at
www.clawpack.org
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Elasticity in 1 Dimension

εt − ux = 0

ρ(x)ut − σ(ε, x)x = 0

ε(x , t) : Strain u(x , t) : Velocity

σ(ε, x) : Stress ρ(x) : Density

A B

δ
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Stegotons

A B

δ

Linear elasticity: σ = Kε

Nonlinearity: σ = eKε − 1
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A comparison of high and low order accuracy

Black - ”exact” solution
Red - 2nd order solution
Blue - 5th order solution
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Time Reversal Test

20 30 40 50 60 70 80
�0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Strain at time 600.0000

This is a unique test problem because we can expect high order
convergence even after long-distance wave propagation.
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Time Reversal Test

2nd order solution 5th order solution
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Stability of 2D Stegotons

A partial experimental realization: Berezovski et. al., 2006
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