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Things I hope to convince you of

(with very little mathematics and notation):

a. Many CS&E applications can be cast as simulation-based
optimization problems

b. These problems are often computationally expensive and are
lemons for traditional optimization techniques

c. By building tractable models of the objective, our algorithms
efficiently find good solutions



Motivating Problems Our Approach DFO Algorithms

Advances in Computing Hardware

Mean that simulation-based problems are evolving

ANL’s new 445-teraflops Blue Gene/P (photo: George Joch)
.
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Advances in Computing Hardware

Mean that simulation-based problems are evolving

• Some problems become faster
to solve

• Others become more realistic

ANL’s new 445-teraflops Blue Gene/P (photo: George Joch)
.
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Motivating Problems Our Approach DFO Algorithms

Optimization of Computationally Expensive Functions

Optimization is the “science of better”

Find decision parameters x = (x1, . . . , xn) to improve objective f(x)
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Optimization of Computationally Expensive Functions

Optimization is the “science of better”

Find decision parameters x = (x1, . . . , xn) to improve objective f(x)

f(x) is expensive to evaluate at point x

• Evaluating f(x) means running deterministic simulation S
which depends on x: f(x) = g(S(x))

Ex- S = solving PDEs via finite elements

• S (could/must be parallelized) takes secs/mins/hrs for 1 x

• Need to evaluate at many x to find a good x̂∗
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Ex. 1: Town Brook Subwatershed Calibration Problem

Need accurate model to assess
changes in management practices

Contributes to NYC drinking water

Goal: Calibrate Soil and Water
Assessment Tool (SWAT) model for
flow/sediment/phosphorous (f/s/p)
against 1096 days of measured data

f(x) =
∑

1096

t=1
‖Mt − St(x)‖2

x 14 model parameters (eg.- Snow fall

temp, Snowmelt temp threshold, Melt factor, Surface

runoff lag, Groundwater delay)

Mt Measured f/s/p at time t

St(x) SWAT f/s/p at time t

Model requires 7mins./evaluation
(EPA’s Chesapeake model > 120mins/eval)
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Ex. 2: Cleanup of the Hastings Naval Ammunition Depot

48,800 acres, east of Hastings, NE

TCE/TNT found in irrigation wells

Goal: Minimize “cost” of clean up

f(x) = C(x) + P (S(x))

x Pumping rates at a set of
existing wells

C(x) Cost of pumping strategy x

P (·) Penalty associated with limits
on TCE, TNT

S(x) (Simulated) Concentration
given strategy x
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Ex. 2: Evaluating the Hastings Function

Graphic: Argus Holdings, Ltd.

Discretized model of the site:

• Grid covers 134 miles2

• Six vertical layers: various aquifer layers and
thicknesses

Evaluation requires 20 year simulation:

1. Groundwater flow [MODFLOW]

2. Contaminant transport/reaction [MT3DMS]
(models TCE, PCE, TCA, DCE, TNT, RDX)

Evaluating f takes several to many minutes
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Ex. 3: Parameters for the Universal Nuclear Energy

Density Functional (UNEDF)

SciDAC nuclear energy project

Graphic: UNEDF Collaboration, unedf.org

Goal: Determine parameters in the
functional to fit experimental data

f(x) =
∑

k
wk‖Dk − Sk(x)‖2

x 10-20 model parameters

Dk Data vector for kth nucleus

Sk(x) Set of observables from the
HFODD code for kth nucleus

wk Weight for the kth nucleus

HFODD for U236 requires 90mins
(≈ 2000 nuclei ⇒≈ 125 days/eval!)
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These Problems are Lemons for Optimizers

Optimization takes advantage of known
structure, but:

• f is often a blackbox (executable only or
proprietary/legacy codes)

• Only give a single output (no derivatives
∇S(x),∇2S(x))
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These Problems are Lemons for Optimizers

Optimization takes advantage of known
structure, but:

• f is often a blackbox (executable only or
proprietary/legacy codes)

• Only give a single output (no derivatives
∇S(x),∇2S(x))

Good solutions guaranteed in the limit, but:

• Usually have computational budget (due
to scheduling, finances, deadlines)

• Limited number of evaluations
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Our Goal

Solve general problems min{f(x) : x ∈ D ⊆ R
n}:

• Only require function values (no ∇f(x))

• Don’t rely on finite-difference approximations
• Can be misleading due to noise
• Can be inefficient (each set of n + 1 evaluations useful for a

single step only)

• Seek greedy and rapid decrease of function value

• Take advantage of the expense of the function
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Make Use of Bank of Previously Evaluated Points

f is expensive ⇒ can afford to make better use of points
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of the best point
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Replace Expensive Function with Tractable Surrogate

To reduce # of expensive evaluations

Quadratic Interpolating 6 Points in R
2

Interpolation Surrogate Model:

m(yi) = f(yi) for all yi ∈ Y

• Conditions give model
parameters
Quadratic m(x):

a + bT x + 1

2
xT Cx

RBF m(x):∑
i
aiφ(‖x − yi‖) + p(x)

• Require geometric conditions
on Y to ensure interpolation is
well-posed

• Need to bound f(x) − m(x)
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Nonlinear Programing Technique: Trust-regions

Iteration k:

• Trust model mk within
region Bk

• Minimize mk within
Bk to obtain next
point for evaluation

• Update mk and Bk
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Main Theoretical Results

Introduced framework for interpolating
evaluated points while keeping model stable
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Figure shows regions where additional points cannot be
added (varying precision levels)

Approximation bounds

• |f(x) − m(x)| = O(∆2)

• |∇f(x)−∇m(x)| = O(∆)

• ∇2m(x) ≤ κ

for all x ∈ {x : ‖x − xk‖ ≤ ∆}

Convergence

• limk→∞ ‖∇f(xk)‖ = 0
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Our Algorithms and Software

Local & Global, Unconstrained & Bound Constrained Solvers:

ORBIT Algorithm (RBFs)

• Matlab code available, Open Source C code soon
• ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions. With Regis and Shoemaker.

To appear in SIAM J. on Scientific Computing, 2008.

MNH Algorithm (Quadratics)

• Matlab code available, other versions under development
• MNH: A Derivative-Free Optimization Algorithm Using Minimal Norm Hessians. Tenth Copper Mountain

Conference on Iterative Methods, April 2008.

GORBIT Algorithm (RBFs)

• Matlab code available, Open Source C code soon
• Global Optimization Without Derivatives By Multistart ORBIT. With Shoemaker. In preparation, June

2008.
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Ex. 1: Town Brook Subwatershed Calibration Problem

Need accurate model to assess
changes in management practices

Contributes to NYC drinking water

Goal: Calibrate Soil and Water
Assessment Tool (SWAT) model for
flow/sediment/phosphorous (f/s/p)
against 1096 days of measured data

f(x) =
∑

1096

t=1
‖Mt − St(x)‖2

x 14 model parameters (eg.- Snow fall

temp, Snowmelt temp threshold, Melt factor, Surface

runoff lag, Groundwater delay)

Mt Measured f/s/p at time t

St(x) SWAT f/s/p at time t

Model requires 7mins./evaluation
(EPA’s Chesapeake model > 120mins/eval)
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Town Brook Calibration Problem (n = 14)
Goal: Rapid Function Value Decrease

Best function value in k evals
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Solvers in MATLAB:

• Opportunistic Pattern
Search best in initial stages

• ORBIT best for budgets
between 20 and 140 evals

• For larger numbers, ORBIT
and PS roughly the same

• ORBIT’s 95% bands
narrowest

Note: Genetic algorithms do
much worse on this problem
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Future Work and Conclusions

• Despite/because of HPC, abundance of
computationally expensive blackbox
functions

• Our algorithms find good solutions with
fewer evaluations

• Done at the cost of additional work at
optimization level (negligible CPU time
relative to evaluation)

Future Work

• Address even more types of problems
(general constraints, noise, parallel
function evaluations)
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...Thanks and problems always welcome!
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