When Life Hands You Lemons: Optimize Away!

Stefan Wild

Joint work with Christine Shoemaker (Cornell) and Jorge Moré (ANL)

Cornell School of Operations Research and Information Engineering
September '08: Argonne National Laboratory Director's Postdoctoral Fellow

June 17, 2008
Things I hope to convince you of (with very little mathematics and notation):

a. Many CS&E applications can be cast as simulation-based optimization problems

b. These problems are often computationally expensive and are *lemons* for traditional optimization techniques

c. By building tractable models of the objective, our algorithms efficiently find good solutions
Advances in Computing Hardware

Mean that simulation-based problems are evolving

ANL’s new 445-teraflops Blue Gene/P (photo: George Joch)
Advances in Computing Hardware

Mean that simulation-based problems are evolving

- Some problems become faster to solve
- Others become more realistic

ANL’s new 445-teraflops Blue Gene/P (photo: George Joch)
Optimization of Computationally Expensive Functions

Optimization is the "science of better"

Find decision parameters \(x = (x_1, \ldots, x_n) \) to improve objective \(f(x) \)
Motivating Problems

Optimization of Computationally Expensive Functions

Optimization is the “science of better”

Find decision parameters $x = (x_1, \ldots, x_n)$ to improve objective $f(x)$

$f(x)$ is expensive to evaluate at point x

- Evaluating $f(x)$ means running deterministic simulation S which depends on x: $f(x) = g(S(x))$
 - Ex- $S = $ solving PDEs via finite elements
- S (could/must be parallelized) takes secs/mins/hrs for 1 x
- Need to evaluate at many x to find a good \hat{x}_*
Ex. 1: Town Brook Subwatershed Calibration Problem

Need accurate model to assess changes in management practices

Goal: Calibrate Soil and Water Assessment Tool (SWAT) model for flow/sediment/phosphorous (f/s/p) against 1096 days of measured data

\[f(x) = \sum_{t=1}^{1096} \| M_t - S_t(x) \|^2 \]

- \(x \): 14 model parameters (e.g., Snow fall temp, Snowmelt temp threshold, Melt factor, Surface runoff lag, Groundwater delay)
- \(M_t \): Measured f/s/p at time \(t \)
- \(S_t(x) \): SWAT f/s/p at time \(t \)

Model requires 7mins./evaluation (EPA’s Chesapeake model > 120mins/eval)
Ex. 2: Cleanup of the Hastings Naval Ammunition Depot

48,800 acres, east of Hastings, NE

Goal: Minimize “cost” of clean up

\[f(x) = C(x) + P(S(x)) \]

- \(x \): Pumping rates at a set of existing wells
- \(C(x) \): Cost of pumping strategy \(x \)
- \(P(\cdot) \): Penalty associated with limits on TCE, TNT
- \(S(x) \): (Simulated) Concentration given strategy \(x \)

TCE/TNT found in irrigation wells
Ex. 2: Evaluating the Hastings Function

Discretized model of the site:

- Grid covers 134 miles2
- Six vertical layers: various aquifer layers and thicknesses

Evaluation requires 20 year simulation:

1. Groundwater flow [MODFLOW]
2. Contaminant transport/reaction [MT3DMS] (models TCE, PCE, TCA, DCE, TNT, RDX)

Evaluating f takes several to many minutes
Ex. 3: Parameters for the Universal Nuclear Energy Density Functional (UNEDF)

SciDAC nuclear energy project

Goal: Determine parameters in the functional to fit experimental data

\[
f(x) = \sum_k w_k \| D_k - S_k(x) \|^2
\]

- \(x \): 10-20 model parameters
- \(D_k \): Data vector for \(k \)th nucleus
- \(S_k(x) \): Set of observables from the HFODD code for \(k \)th nucleus
- \(w_k \): Weight for the \(k \)th nucleus

HFODD for \(U_{236} \) requires 90 mins
(\(\approx 2000 \) nuclei \(\Rightarrow \approx 125 \) days/eval!)
Motivating Problems

These Problems are Lemons for Optimizers

Optimization takes advantage of known structure, but:

- f is often a blackbox (executable only or proprietary/legacy codes)
- Only give a single output (no derivatives $\nabla S(x), \nabla^2 S(x)$)
These Problems are Lemons for Optimizers

Optimization takes advantage of known structure, but:

- f is often a blackbox (executable only or proprietary/legacy codes)
- Only give a single output (no derivatives $\nabla S(x), \nabla^2 S(x)$)

Good solutions guaranteed in the limit, but:

- Usually have computational budget (due to scheduling, finances, deadlines)
- Limited number of evaluations
Our Goal

Solve general problems \(\min \{ f(x) : x \in D \subseteq \mathbb{R}^n \} \):

- Only require function values (no \(\nabla f(x) \))
- Don’t rely on finite-difference approximations
 - Can be misleading due to noise
 - Can be inefficient (each set of \(n + 1 \) evaluations useful for a single step only)
- Seek greedy and rapid decrease of function value
- Take advantage of the expense of the function
Make Use of Bank of Previously Evaluated Points

f is expensive \Rightarrow can afford to make better use of points

Bank of data, $\{x_i, f(x_i)\}_{i=1}^k$:

- Points (& function values) evaluated so far
- Everything known about f

Goal:

- Make use of growing Bank as optimization progresses
- Use points in a neighborhood of the best point
Motivating Problems

Our Approach

DFO Algorithms

Make Use of Bank of Previously Evaluated Points

\(f \) is expensive \(\Rightarrow \) can afford to make better use of points

\[\text{Bank of data, } \{x_i, f(x_i)\}_{i=1}^{k}: \]

- Points (& function values) evaluated so far
- Everything known about \(f \)

Goal:

- Make use of growing Bank as optimization progresses
- Use points in a neighborhood of the best point

Stefan Wild June 17, 2008
Motivating Problems

Our Approach

DFO Algorithms

Replace Expensive Function with Tractable Surrogate

To reduce # of expensive evaluations

Interpolation Surrogate Model:

\[m(y^i) = f(y^i) \text{ for all } y^i \in \mathcal{Y} \]

- Conditions give model parameters

 Quadratic \(m(x) \):
 \[
 a + b^T x + \frac{1}{2} x^T C x
 \]

 RBF \(m(x) \):
 \[
 \sum_i a_i \phi(\|x - y^i\|) + p(x)
 \]

- Require geometric conditions on \(\mathcal{Y} \) to ensure interpolation is well-posed

- Need to bound \(f(x) - m(x) \)
Nonlinear Programing Technique: Trust-regions

Iteration k:

- Trust model m_k within region B_k
- Minimize m_k within B_k to obtain next point for evaluation
- Update m_k and B_k
Nonlinear Programming Technique: Trust-regions

Iteration k:

- Trust model m_k within region B_k
- Minimize m_k within B_k to obtain next point for evaluation
- Update m_k and B_k
Nonlinear Programming Technique: Trust-regions

Iteration k:

- Trust model m_k within region B_k
- Minimize m_k within B_k to obtain next point for evaluation
- Update m_k and B_k
Nonlinear Programming Technique: Trust-regions

Iteration k:

- Trust model m_k within region B_k
- Minimize m_k within B_k to obtain next point for evaluation
- Update m_k and B_k
Nonlinear Programming Technique: Trust-regions

Iteration k:

- Trust model m_k within region \mathcal{B}_k
- Minimize m_k within \mathcal{B}_k to obtain next point for evaluation
- Update m_k and \mathcal{B}_k
Nonlinear Programming Technique: Trust-regions

Iteration k:

- Trust model m_k within region B_k.
- Minimize m_k within B_k to obtain next point for evaluation.
- Update m_k and B_k.
Nonlinear Programming Technique: Trust-regions

Iteration k:

- Trust model m_k within region B_k
- Minimize m_k within B_k to obtain next point for evaluation
- Update m_k and B_k
Main Theoretical Results

Introduced framework for interpolating evaluated points while keeping model stable

Approximation bounds

- \(|f(x) - m(x)| = O(\Delta^2) \)
- \(|\nabla f(x) - \nabla m(x)| = O(\Delta) \)
- \(\nabla^2 m(x) \leq \kappa \)

for all \(x \in \{ x : \|x - x^k\| \leq \Delta \} \)

Convergence

- \(\lim_{k \to \infty} \|\nabla f(x^k)\| = 0 \)

Figure shows regions where additional points cannot be added (varying precision levels)
Our Algorithms and Software

Local & Global, Unconstrained & Bound Constrained Solvers:

ORBIT Algorithm (RBFs)

- Matlab code available, Open Source C code soon

MNH Algorithm (Quadratics)

- Matlab code available, other versions under development

GORBIT Algorithm (RBFs)

- Matlab code available, Open Source C code soon
Ex. 1: Town Brook Subwatershed Calibration Problem

Need accurate model to assess changes in management practices

Goal: Calibrate Soil and Water Assessment Tool (SWAT) model for flow/sediment/phosphorous (f/s/p) against 1096 days of measured data

\[
f(x) = \sum_{t=1}^{1096} \| M_t - S_t(x) \|^2
\]

\(x\) 14 model parameters (e.g., Snowfall temp, Snowmelt temp threshold, Melt factor, Surface runoff lag, Groundwater delay)

\(M_t\) Measured f/s/p at time \(t\)

\(S_t(x)\) SWAT f/s/p at time \(t\)

Model requires 7mins./evaluation (EPA’s Chesapeake model > 120mins/eval)
Town Brook Calibration Problem \((n = 14) \)

Goal: Rapid Function Value Decrease

Best function value in \(k \) evals

Solvers in MATLAB:

- Opportunistic Pattern Search best in initial stages
- ORBIT best for budgets between 20 and 140 evals
- For larger numbers, ORBIT and PS roughly the same
- ORBIT’s 95% bands narrowest

Note: Genetic algorithms do much worse on this problem

(Mean in 30 Trials, lower is better)
Future Work and Conclusions

- Despite/because of HPC, abundance of computationally expensive blackbox functions
- Our algorithms find good solutions with fewer evaluations
- Done at the cost of additional work at optimization level (negligible CPU time relative to evaluation)

Future Work

- Address even more types of problems (general constraints, noise, parallel function evaluations)
Acknowledgments

Christine Shoemaker & Rommel Regis

Jorge Moré & MCS

DOE Computational Science Graduate Fellowship, grant DE-FG02-97ER25308

The Krell Institute

Papers available at www.orie.cornell.edu/~wild

Acknowledgments

Christine Shoemaker & Rommel Regis

Jorge Moré & MCS

DOE Computational Science Graduate Fellowship, grant DE-FG02-97ER25308

The Krell Institute

Papers available at www.orie.cornell.edu/~wild

...Thanks and problems always welcome!

Stefan Wild
June 17, 2008