An explicit approach to stochastically modeling fatigue crack formation

Michael G. Veilleux

In collaboration with: J D Hochhalter, J E Bozek, P A Wawrzynek, and A R Ingraffea

DOE CSGF 2008 Fellows' Conference June 17, 2008

Washington Court Hotel on Capitol Hill

Outline

- I. Introduction: from paperclips to aging aircraft
- II. Project scope: the micro-fine details
- III. Research highlights
 - A. Microstructure model generation
 - B. Finite element meshing
 - C. Microstructural scale fatigue crack growth analysis
- IV. The bigger picture

Introduction: bending paperclips

- A simple example of uncertainty from my first engineering course:
 - 1) Take a box of paperclips and bend each paperclip, repeatedly back-and-forth until the paperclip breaks, *i.e.* cause **fatigue** failure in each clip
 - Count the number of bends it takes to break each clip
 - 3) Plot a histogram/distribution of the results
- What to do about uncertainty?
 - Undergraduate approach: apply generous factors of safety, *e.g.* 0.4μ
 - Graduate approach: answer one "simple" question why?

Introduction: flying aircraft

- A more important example of uncertainty:
 - On April 28, 1988, the fuselage of an Aloha Airlines aircraft, a B-737-200, breaks apart in mid-flight, at approximately 7,000 meters above sea level
- What to do about uncertainty?
 - Traditional approach: apply generous safety factors and frequent inspections
 - State-of-the-art approach: use advanced experimental and computational capabilities to answer a "simple" question *why is there variability in the number of load cycles to failure?* (and, can we predict the stochastic behavior that causes this variability?)

April 28, 1988: Aloha Airlines Flight 243

Image source: http://en.wikipedia.org/wiki/Aloha_Airlines_Flight_243

Project scope: getting down to the micro details

Research highlights: generating microstructures

Research highlights: inserting particles that crack

- 1) Sample experimentally recorded particle statistics to create a digital realization
- 2) Reduce to a computationally tractable set of particles that directly influence crack growth:
 - a) Filter out particles that are experimentally determined to be inconsequential: those that are sub-surface or smaller than $6 \ \mu m^2$

b) Sample a response surface, developed from 2592 finite element analyses (4 TB of data) covering the range of likely particle configurations, to determine which of the

Research highlights: finite element meshing

- Developed an in-house, fully automated, 3D unstructured tetrahedral discretizing routine: resulting mesh conforms to internal and external surfaces, *e.g.* region interfaces and cracks
- Improvements made to create high quality meshes of realistic microstructures:
 - A mesh size seeding routine, with octree and rangetree algorithms, to improve mesh gradients nearby small geometrical features

Original mesh

Improved mesh

- A parallel routine: meshes each region, *i.e.* grain or particle, on a separate processor
 - Still creates conforming meshes at interfaces
 - Mesh time reduced by O(m) where $m = \# regions \ per \ model = O(100)$
 - Resulting finite element model size: O(10⁷) degrees of freedom

Research highlights: modeling cracks

Observed phenomena:

Illustration of Stage I crack at no load (a), full tensile load (b), and back to no load (c), from:

C. Laird, 1967.

SEM images courtesy of Northrop Grumman Corporation

- Simulating crack trajectory:
 - Incubation (first flight) use filter to determine and insert cracked particles
 - Nucleation (10-100 flights) and microstructure-governed crack propagation (O(10,000) flights) use the appropriate damage criterion based on microstructural physics, *e.g.* one of the following:
 - Max. accumulated slip on a single system: D_1
 - Max. accumulated slip on a single plane: D_{γ}
 - Total accumulated slip: D_3
 - Total work: D_{Λ}
 - Fatemie-Socie parameter: D_5

Research highlights: modeling cracks*

$$D_2 = \max_p \gamma^p$$

 $\gamma^{\alpha} \equiv accumulated slip \quad \gamma \equiv accumulated slip$ on all slip systems on systema

 $\gamma^p \equiv accumulate\ d\ slip\ on\ plane\ p$ $\tau_p^{\alpha} \equiv shear stress on$ plane p and system α

$$D_3 = \gamma$$

 $g_0 \equiv initial \ resistance \ to$ slip on each system $\sigma_n^{\alpha} \equiv normal \ stress \ on$

$$\sigma_n^{\alpha} \equiv normal \ stress \ on$$

$$plane \ p$$
10

$$D_4 = \max_{p} \int_{0}^{t} \sum_{\alpha=1}^{3} \left| \begin{array}{c} \bullet \\ \gamma_p \tau_p^{\alpha} \end{array} \right| dt$$

*Work completed in collaboration with D. Littlewood, RPI

Research highlights: modeling cracks

- Simulating crack growth rate:
 - Use a crack growth rate criterion, *e.g.*:

$$\frac{da}{dN} = G(\Delta CTD - \Delta CTD_{TH})$$

where G and ΔCTD_{TH} are material parameters, and ΔCTD , change in crack tip displacement, is computed

• Explicit approach: update crack geometry and re-mesh

The bigger picture: a multiscale approach

The bigger picture: end product

Physics-based modeling of an extreme event...

... before it occurs!

Acknowledgements

- DOE CSGF and the Krell Institute
- My research advisor, Dr. Anthony Ingraffea
- My practicum advisor, Dr. Rebecca Brannon at Sandia National Laboratories
- The Cornell Fracture Group
- The DARPA SIPS program and collaborators therein from Northrop Grumman, Rensselaer Polytechnic Institute, Lehigh University, and Carnegie Mellon University
- All of you!

