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Introduction
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Porous Medium

o solid permeated by
interconnected 3-D network
of channels

o commonly referred to as
pore spaces

o morphology and topology

o occur naturally in nature
and industry
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Multiphase system of interest - entities for a two fluid-phase

system

phases : w,n,s
interfaces: wn, ws, ns
common curves: wns
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Introduction Traditional Models

o majority of porous medium flow simulators based on
continuum theory
o consists of two main parts:

1. conservation equations
2. closure relations

o traditional approaches exist and are still widely used

o limits to effectiveness and predictability - motivation for new
approaches
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Introduction Traditional Models 0 Modeling

o simplifying assumptions
d(ep) L bun oy, © minimum set of conservation
ar =V (epVI)HT+S equations

" o multiphase extension to Darcy's
q =€Vt R (Vp' —p'g) law
ML

o define equations of state

o constitutive relations among
s =s"(p) pressure, saturation, and
permeability
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Introduction Traditional Models TCAT Pore-scale Modeling Acknowledgments
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o averages from smaller scale to scale of interest

o averages not only conservation equations but also
thermodynamics and equilibrium conditions

o includes evolution equations for interfaces and common curves

o uses a constrained averaged entropy inequality and force-flux
pair approach to guide closure relations

D (S HAUM F X P+ NE AT ) =N >0
LeJ

o clearly defines all variables, separates between exact forms and
approximations, details assumptions

o creates a framework for extension, revision, and simplification
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o 31 unknowns

o 2 conservation of mass eqns. and 18 momentum eqns.

st ~ 1 0(ng-tsen ~ Op* __
St {00 B 5
and Z R, V™ = —€'p'V (¢ + ) for v € {w,n}
K€D
R v = R.-v®° for . € {wn,ws,ns, wns}
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Introduction

Traditional

o 3 constraints from the entropy inequality

Sl e ) e [ ] et

wns wns . wns wns _: w _ as D3¢’
+xs | — Yo sin ¥ =¢ D (1)

A

. [D%e” Dfe®
CWn [ _"_ XSVVS }

Dt Dt
_ gwn {D]; +(s" - WS)%} 2)
and
17 wns | wns W wns | . wns WS
g[vws + YOSV — 4 + 4"k ]:
o[22 e 8
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o 3 geometric contraints

DS(GWS _|_€ns) :DEG

O + Js T = _V. (GWSGWS) _VR,E _ 6wsGws:dﬁ
_v. (enanS) WSS Enans:dﬁ (4)
D§€wn s ns DEXWS :DEEW
_ Ak s _ ywn
Di (" + €™) cos Dt I Dt
= . Dse
+ [XS"VSJM”,’" — x2"™ sin \IIW] D

= x® cosU" [V- (e*°G") -v"™* + eWSGWS:dﬁ]
—x2® cos W™ [Vo (€™G™) -v™* + e”SG"s:dﬁ}
V. (ewnGwn) S EwnGwn:dﬁ (5)
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S _wns S ws S
Dse wns ([ _ws ns Dex wns wnsD €
L G ) e
Dt Dt Dt
— _vaGvns ns ( wsGWS)_VWs,E _ K_’gns ns ws - ws, dWS
_i_K;FXSWSV. (enanS) _VTS,E + K’Fxswsensc;ns:dnfs
-V. (EwnsGwnS) _VW,E _ ewnsGwns:dTm (6)
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Introduction Traditional Models

o 5 EOS
1 Il(1 —€)p°

ab— ! [( €)p°] (7)

(1—¢€)ps \ O(ns- ts'ns>st,st 03
’}/W”Jx,m =p ( w Wn’XSWS) (8)
RN = RR(s, €, ) )
/fvc‘;ms = ”?(SWJ;VS?XSWHS) (10)

and

" = WW(SW76WH7XSWS) (11)
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Random Packing

o random packing algorithm

o non-overlapping,
random-size, gravitationally
stable spheres

o matches porosity, mean and
standard deviations of
log-normal grain diameter
distributions
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Introduction els Pore-scale Modeling

o solves micrscopic Boltzmann
equation

o D3Q19 lattice

o pressure boundary conditions
o multiphase formulation
o external force at each
lattice node as a function
of neighboring node
properties
o long-range interactions
between phases defined
according to fluid-fluid or
solid-fluid interaction
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Introduction Traditional Models Pore-scale Modeling Acknowled

o use pore-scale simulations to examine microscale physics and
inform closure relations

o domain decomposition algorithm used to optimize work load
for parallelization

o essentially linear parallel scaling
o NERSC

o currently working on determining the desired set of porous
medium systems to model
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Extra Details for Referencing

Averaging operator

J wP, dr
Q;
Poauw =—" (12)
f wdr
Qy

intrinsic average: p* = <pL>QL Q,

mass average: V' = (Vi)q o,

specially defined averages: t' = (t, — p, (v, — v*) (v, — vz)>QL a,
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References Extra Details for Referencing

o Molecular scale: 1071 to 10~9 m - diffusion, reactions

o Pore-scale or microscale: order of a typical pore size ranging
from 107> to 103 m - continuous fluids

o Lab scale, macroscale, or continuum scale: instruments and
techniques for measuring characteristic of porous media exist

in this range from 1072 to 10° m - governing equations apply

o Field scale or meso-scale: order of an aquifer thickness ranging
from 10! to 103 m - more practical for hydrological community

o Regional scale or mega-scale: regional water source
management scale ranging from 103 to 10° or larger
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Representative Elementary Volume (REV)

An REV can be described as a region of porous media large
enough to include all phases present and of a sufficient size such
that the values of averages that characterize a phase are
independent of that size.

The REV is considered to have a characteristic length scale that is
much smaller than the system length scale such that gradients of
macroscale quantities within the system are meaningful.
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General entropy balance equation:

+old = - (el ) —eb— Y (MLJFK?) — N (13)

Iiech

DZnL

Summing over all entities gives us:

ZSL:Z Dznb+nf|:df_v_ <€L¢Z)_ELbL =A>0

el ved
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Extra Details for Referencing

Mass: -
DI (et pt _ K—1
M = —]()Etp ) +eptld — Z M =0 (15)
KEJe,
Momentum:
D (e'p'v?) _ = - _
Pt = o + eprvbl:dL N v <6LtL) _ eLpLgL
K—L K—l
- (Mv-l- T):O (16)
KEJe,
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Extra Details for Referencing

Energy:

D* [Ef + etpt (%vZ Vi KE: + W)]

Lo
&= Dt

= 1 - _ = _ = = _ =
+ |:EL +€Lpl, (EVL vt + Ké+wb>:| I:d — V- <€LtL.VL+€LqL)

KR—L K—1L R—tL
—en -y (W4T 476 <o (a7

KEJCL

35 conservation equations containing 171 unknowns
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Extra Details for Referencing

o Classic Irreversible Thermodynamics
CIT: E(x,£) = En(x, £), p(x, £)]

o Thermodynamic equations for phases, interfaces and common

curves
Fluid phases:
DZEf ,Dinf _D¢ (ELPL) DieL
T — 6 2 L 1
Dt Dt " Dt Dt (18)
N D (9‘ " 9L> L, D =) D(p —p) 0
n Dt P D Dt o0 g N
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Extra Details for Referencing

Augmented entropy inequality:

D (S H MM F AP+ NE + NT) =N >0,  (19)
ved

each term added to ) S*is equal to zero
<)
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References

DZTF Dt (ebpb) Dt (eLpLVZ) DIEZ _ D¢ (GLpLVL)
L AL AL L
Z{Dt T AR T T e YT
_ Tt N\ DF (et pt D* (KE + wi) DIE? _Dipt
Y A A O G0 B v _ gD
2 Dt Dt Dt Dt
ZDZ (eLpL) n WDW€W N "Dﬁen Dmews B Dmewn
F D PP bt TP Dt "7 Dt T T Dt
Dﬁens Dmewns
o L G
+ Ywns Dt ] + } >0

s Ty
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Extra Details for Referencing

o assume independence of solid surface orientation
o assume macroscopically simple system
o assume slow solid-phase deformation

o assume independence for product-splitting integral
approximations

Modeling of Multiphase Flow in Porous Medium Systems Jackson, Miller, Gray



Extra Details for Referencing

o resultant constitutive forms

t” + p“I=0 (20)
£t - =0 (21)
s — " (1-G") =0 (22)

o linear approximation of flux - creates dependence of variables

on system properties
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The evolution of the fluid particle distributions is governed by the
discrete Boltzmann equation,

filx+eit+1)—fi(x,t)=5 [f,‘e")(x, £) — fi(x, t)] YF(23)

where f; are the particle distribution functions associated with each
e; at each node x, fieq are the equilibrium distribution functions, S
is a collision operator, and F; is an external forcing term .

To simulate multiphase flow in porous media, long-range
interactions of the form

Fo=Frrr+Frrs+ pugi (24)

are included, where F ¢_¢ is the fluid-fluid interaction force,
F r_s is the fluid-solid interaction force, and p,g, is the
gravitational force for fluid k.
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