
Literate Programming and
Reproducible Research

in Computational Science

Randall J. LeVeque
Department of Applied Mathematics

University of Washington

Supported in part by DOE and NSF

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Outline

• What is “Literate Programming”?

• What is “Reproducible Research”?

• Why do research reproducibly?
Some lessons I’ve learned the hard way.

• Some tools

• Examples from my field

Responses to some questions raised after the talk have been
added at the end.

See http://www.amath.washington.edu/∼rjl/lprr.html for more
links to literate programming and reproducible research tools.

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Literate Programming

Donald Knuth:

I believe that the time is ripe for significantly better
documentation of programs, and that we can best achieve this
by considering programs to be works of literature. Hence, my
title: “Literate Programming.”

Let us change our traditional attitude to the construction of
programs: Instead of imagining that our main task is to instruct
a computer what to do, let us concentrate rather on explaining
to human beings what we want a computer to do.

From: "Literate Programming (1984)", by D. E. Knuth, in Literate
Programming. CSLI Lecture notes, 1992, pg. 99.

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

WEB and related tools

Knuth introduced WEB in 1981 for documenting TeX source.

Main components:

TANGLE produces Pascal code from text source,
WEAVE produces TeX’ed documentation.

CWEB: Knuth and Levy, for C and C++.

Various other versions for different languages, and
language-independent versions such as noweb and
FunnelWeb.

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Literate Programming and Reproducible Research often go
hand in hand.

Many tools and approaches, for example:

• Doxygen documentation generator is widely used,

• AMRITA James Quirk (Los Alamos), “Cross between a
document preparation system, a computational engine,
and a programming language”,
Using Acrobat 9.0 with many new features.

• Madagascar for geophysical data analysis

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Reproducible Research

A crucial aspect of the Scientific Method

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

The Scientific Method

From Wikipedia:

“Scientific method” refers to the body of techniques for
investigating phenomena, acquiring new knowledge, or
correcting and integrating previous knowledge. It is based on
gathering observable, empirical and measurable evidence
subject to specific principles of reasoning.

Another basic expectation is to document, archive and share all
data and methodology so they are available for careful scrutiny
by other scientists, thereby allowing other researchers the
opportunity to verify results by attempting to reproduce them.
This practice, called “full disclosure”, also allows statistical
measures of the reliability of these data to be established.

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Reproducible Research in Computational Science

“Computation” or “simulation” is a young branch of science,
complementing
• Theory,
• Experiment (non-computational),
• Observation.

Standards and expectations have not yet matured.

It’s an exciting time in computational science!
Progress is rapid, capabilities and techniques evolve quickly.

People in this room should be on the leading edge,
not left behind. Don’t become a scientific joke, as in

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

The Journal of Irreproducible Results www.jir.com

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Reproducible Research in Computational Science

J. B. Buckheit and D. L. Donoho, WaveLab and reproducible
research, 1995 (following Jon Claerbout’s lead):

An article about computational science in a scientific
publication is not the scholarship itself, it is merely advertising
of the scholarship. The actual scholarship is the complete
software development environment and the complete set of
instructions which generated the figures.

Some comments:
• Even more true for talks.

As in talks on theory or experiments, the paper should
contain many details not mentioned in a talk.

• Some papers on computational science should contain
all the details. (Others can’t.)

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Reproducible Research in Computational Science

My own goal:

When a project is complete (e.g. a paper is published), the
computational tools and data should be preserved in a manner
that allows one to reproduce the final products (e.g., figures,
tables, error values) and to later understand the methods used
and the implementation (including all parameter values).

The paper should contain all details that can be reasonably
included. Other details should be available on-line.

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Reproducible Research in Computational Science

Why?
Heart of the “Scientific Method”. Others should be able to
attempt to reproduce your results, perhaps from scratch. This is
impossible if method is not fully described.

Often many competing methods have been proposed. At some
point we must systematically compare them, in order to judge
which methods are best for which problems.

Original author often can’t reproduce results at a later time.
Parameter values forgotten, codes misplaced, collaborators or
students have disappeared, etc.

We should build on past work rather than constantly starting
over.

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Reproducible Research in Computational Science

Why not?
A lot of extra work. (Especially without proper tools.)

Research is often done piecemeal — some results obtained,
code modified, more results obtained (but code no longer
capable of producing first set of results), etc.

Computer program is valuable intellectual property with years
of work invested. Don’t want to share with competitors.

Code isn’t pretty enough or sufficiently well organized to share.

Program uses proprietary packages and/or only runs on special
hardware.

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Some advice, based on 30 years of poor habits:

Begin by practicing RR methodology for your own sake.
• You don’t need to make all your codes freely available, but

you should archive them for your own later inspection and
use.

• Computer codes and input data are generally small by
today’s standards, can afford to keep many versions.

• Use versioning tools, such as Subversion.
• Keep a “lab notebook” (or electronic equivalent) to keep

track of what tests you’ve done, where to find things, etc.

Some benefits:
• You’ll do better work.
• Much less frustration down the road.
• Greater ability to build on your past work

(and your students’).

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Some thoughts on making codes available:

Objection: Code only runs with proprietary software or special
hardware.

Response: Code still provides a record of exactly what method
was implemented, what parameter values used, etc.

Objection: Code isn’t pretty or well organized.

Response: Most research codes aren’t.
(Most commercial codes aren’t either!)
They need not be beautiful to be useful.

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Some thoughts on making codes available:

Objection: Valuable intellectual property.

Response:

Not so easy for others to use/modify even when you try to
create user-friendly software.

If others are expected to provide code for publications too, it will
be clear if they’ve used your code.

Most computational experiments raise more questions than
answers, sharing can lead to new collaborations.

Your work will be better recognized if your methods are widely
adopted by others.

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Some tools

Versioning software, e.g.
CVS, Subversion, Mercurial

Python: Object oriented scripting language with many uses,

• Matlab style experimentation (NumPy, SciPy)
See www.enthought.com

• Open source graphics, visualization
(matplotlib, VisIt, MayaVi)

• file manipulation (including url’s, ftp), text manipulation,
• CGI scripting, web interfaces
• interfacing between different languages (Swig, f2py)
• interfaces to and between legacy codes

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Some tools we’re developing

mathcode2html.py Modest attempt at literate programming.

html and simple latex commands embedded in comments,
Displayed in web browser using jsMath.
Stays up to date with source code via “make” command.

clawtools module to allow manipulating data, running code,
processing output, creating html or pdf’s, etc.

For use with CLAWPACK (Conservation Laws Package)
Fortran code for hyperbolic partial differential equations

EagleClaw: Easy Access Graphical Laboratory for Exploring
Conservation Laws. Web interface to CLAWPACK.

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Some applications where CLAWPACK has been used

• Aerodynamics, supersonic flows

• Seismic waves, tsunamis, flow on the sphere

• Volcanic flows, dusty gas jets, pyroclastic surges

• Ultrasound, lithotripsy, shock wave therapy

• Plasticity, nonlinear elasticity

• Chemotaxis and pattern formation

• Semiconductor modeling

• Multi-fluids, multi-phase flows, bubbly flow

• Combustion, detonation waves

• Astrophysics: binary stars, planetary nebulae, jets,

• Magnetohydrodynamics, plasmas, relativistic flow

• Numerical relativity — gravitational waves, cosmology

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Demos

EagleClaw: preliminary version can be tested soon at
www.clawpack.org

clawtools for running a set of experiments.

clawcode2html used to convert source files to become part of
documentation.

Test problem:
One-dimensional advection equation qt + uqx = 0
True solution: q(x, t) = q(x− ut, 0)

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Python script to run a series of tests

import clawtools

data = clawtools.ClawData()

data.mx = 50
data.order = 1
data.write(’claw1ez.data’)
od = ’output_mx50_order1’
pd = ’plots_mx50_order1’
clawtools.runclaw(outdir=od)
clawtools.plotclaw(outdir=od, plotdir=pd)

repeat for other values of mx, and for order = 2

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Python script to run a series of tests

import clawtools

data = clawtools.ClawData()

for order in [1,2]:
for mx in [50, 100, 200, 400]:

data.order = order
data.mx = mx
data.write(’claw1ez.data’)
od = ’output_mx%s_order%s’ % (mx, order)
pd = ’plots_mx%s_order%s’ % (mx, order)
clawtools.runclaw(outdir=od)
clawtools.plotclaw(outdir=od, plotdir=pd)

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Final comments

Computational science is rapidly evolving.
Higher expectations are coming in journals,

from grant agencies.

Connections to Verification and Validation (V&V) and
Uncertainty Quantification (UQ)

Tools are rapidly evolving, stay informed.

Tools may become obsolete, e.g. Python 3.X will break
backward compatibility.

May need to archive programming languages, environment as
well as codes, data.

Will archives be maintained and readable in the future?

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Some questions raised after the talk:

One question concerned regression testing, the idea of having a set
test problems that a software package is tested on after any changes
are made to insure that a bug fix or enhancement hasn’t broken
something else. Large ongoing software development projects often
do regression tests every night.

It’s a good idea to do something along these lines even for small
scale projects and tools such as Python can make this easier.

It was pointed out that the development of most scientific computing
programs is funded by federal funds, another argument for making
them freely available at some point rather than considering them
proprietary tools of one research group or the basis for
commercialization.

NIH now requires papers published based on funded research to
eventually pass into the public domain, and perhaps grant agencies in
the future will require that of software.

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Some questions raised after the talk:

Other concerns were raised about making code available:

Concern: The authors are then expected to provide maintenance and
support for others using it.

Response: One of the first open source software projects was netlib
(see www.netlib.org), a repository for numerical analysis software.
The disclaimer there states anything free comes with no guarantee.

You might consider putting a similar statement on your webpage,
along with a disclaimer to the effect that you are not legally
responsible for anything computed with the code, as for example in
the GPL (http://www.gnu.org/licenses/).

People generally realize that most of the free things they find are the
web are not supported.

On the other hand, if people discover bugs in your code that affect the
validity of what is computed, this is presumably useful to know for
your own work!

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Some questions raised after the talk:

Concern: Others may use your code incorrectly and then publish
papers claiming their results are superior based on this work.

Response: This is a danger also (perhaps more so) if they try to
compare with your method by implementing it themselves.

In the long run giving access to your code will probably lead to it
gaining the reputation it deserves (one way or the other).

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

Some additional pointers:

Another open source software project that may be of interest is
SAGE (www.sagemath.org), which collects a large number
(> 100) of open source mathematics packages together with a
unified interface based on Python. Symbolic manipulation,
numerical methods, and graphics are all included.

A web-based notebook interface makes it easy to use as a
literate programming tool. You can try it out online without
downloading or installing.

See http://www.amath.washington.edu/∼rjl/lprr.html for more
links to literate programming and reproducible research tools.

R. J. LeVeque, June 17, 2008 Keynote Talk DOE Computational Sciences Graduate Fellows Conference

	Title page
	Literate Programming
	Reproducible Research
	Tools
	Conclusions

