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Motivation

Development of an inverse problem computational methodology
for the estimation of functional parameters in the presence of
model and data uncertainty

Applications involve the estimation of growth rate distributions in
size-structured marine populations (Type II problem - aggregate or
population level longitudinal data)

Extension of the asymptotic standard error theory for
finite-dimensional ordinary least squares (OLS) estimators to
“functional” confidence bands that will aid in quantifying the
uncertainty in estimated probability distributions

Jimena L. Davis (CRSC/NCSU) DOE CSGF Annual Fellows’ Conference June 18, 2008 4 / 20



Application: Size-Structured Shrimp Population

Use of shrimp as a scaffold
organism to produce large
amounts of a vaccine rapidly
in response to a toxic attack
on populations
[Banks et. al. 2006]

Joint project with ABN (Advanced Bionutrition Corporation)
involving the development of a hybrid model of the shrimp
biomass/countermeasure production system

Being able to accurately model the dynamics of the size-structured
shrimp population is important since the output of the biomass
model will serve as input to the vaccine production model
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Sinko-Streifer (SS) Model for Size-Structured
Populations (1967)

Widely used to describe various age and size-structured
populations (cells, plants, and marine species)

vt (t , x ; g) + (g(t , x)v(t , x ; g))x = −µ(t , x)v(t , x ; g), x < x < x̄ (1)

Initial Condition

v(0, x) = v0(x ; g)

Boundary Condition

g(t , x)v(t , x ; g) =

∫ x̄

x
K (t , ξ)v(t , ξ; g)dξ

Deterministic Growth Rate Model
dx
dt

= g(t , x)
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Example of Aggregate Type Longitudinal Shrimp Data

Previous size-structured population data from a group in Texas
indicates variability in size that could be a result of variability in
growth rates and might suggest the use of GRD model (2)
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Growth Rate Distribution (GRD) Model (1988)

Deterministic growth model of (1) is not biologically reasonable
when modeling populations that exhibit a great deal of variability in
aggregate type longitudinal data as time progresses

GRD model, a modification of the SS model, was developed by
Banks et. al. [Banks et. al. 1988] to account for the variability
observed in populations, such as size-structured mosquitofish
populations that exhibit both dispersion and bifurcation in time

Assumption of GRD: Individual growth rates vary across the
population

u(t , x ; P) =

∫
G

v(t , x ; g)dP(g) (2)
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Early Growth Dynamics of Shrimp

We assume that mortality rate and reproduction rate in (1) are
both zero

We also assume that the size-dependent growth rate function of
the shrimp has the form

g(x ; b, c) = b(x + c),

which was shown to provide reasonable fits to average size data
for 50 randomly sampled shrimp in [Banks et. al. 2008]

Intrinsic growth rate b is a random variable taking values in a
compact set B

Analysis of previous data also suggested that the assumption of a
normal distribution on the intrinsic growth rates leads to a
lognormal distribution in size

We choose a truncated normal distribution with mean µb and
standard deviation σb
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Standard Parametric Approach - PAR(M , N)

In the parametric approach, we assume that we know the
distribution of the growth rates

Assuming P is (absolutely) continuous ( dP
db = p), the population

density from the GRD model (2) is given by

u(t , x ; θ) =

∫
B

v(t , x ; g(x ; b))p(b; θ)db,

where θ ∈ R
M
+ represents the parameters (µb, σb) that are

associated with the a priori probability density and distribution

M represents the number of parameters in θ and N represents the
number of quadrature nodes used to approximate the integral
above
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Parameter Estimation with PAR(M,N)

Ordinary Least Squares Formulation (assuming constant variance
noise model)

We wish to solve for θ̂

θ̂ = arg min
θ∈R

M
+

J(θ) = arg min
θ∈R

M
+

∑
i ,j

|u(ti , xj ; θ) − ûij |
2

We use MATLAB fmincon to determine the optimal values of
θ = (µb, σb) used to generate the estimated probability density
and distribution
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Confidence Intervals... Confidence Bands

Since we reduced infinite dimensional estimation problem to finite
dimensional problem for θ, we are able to compute standard errors
based on the established asymptotic standard error theory for OLS
estimators [Seber and Wild 1989]

Standard errors are used to compute confidence intervals to quantify the
uncertainty in the estimated finite dimensional parameter θ

How does one use the confidence intervals computed in the finite
dimensional setting to construct confidence bands in the infinite
dimensional setting?
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Monte Carlo Sampling Study to Aid in the Design of
Experiments

Goal: Determine the sampling size Ns and sampling frequency Nt
needed to obtain reliable estimates of the probabilistic growth rate
parameters in the GRD model (2) - experiments to be carried out at ABN
and SCDNR (South Carolina Department of Natural Resources)
[Banks et. al. 2008]

Population data (total number of shrimp in each size class) used in
inverse problem calculations

NGRD(t , x ; θ) ≈ u(t , x ; θ)∆x ,

where ∆x is the length of the size class interval

We simulated population data, where Ns varied from 25, 50, 75 to 100
and Nt varied from twice a week, once a week to once every two weeks
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Monte Carlo Sampling Study Results
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Conclusions: Most desirable experiment involved using Ns = 100 once a
week; however there appears to be little loss in accuracy if one uses
Ns = 50
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Parameter Estimation Results with ABN Data

Inverse problem with data (subsequently) collected from shrimp
cultured in tanks at ABN

Fifty shrimp were randomly sampled and measured once a week
under relatively constant tank conditions

Using our methodology, we determined estimates of the growth
rate distribution and quantified the uncertainty associated with
these estimates with confidence bands
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PAR(2,128) Results with Complete December Data

µ̂b ± 1.96SE(µ̂b) : 0.0010 ± 0.0535
σ̂b ± 1.96SE(σ̂b) : 0.0324 ± 0.0313
J∗ = 574.8315, σ̂2 = 17.4191
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PAR(2,128) Results Excluding December 11 Data

µ̂b ± 1.96SE(µ̂b) : 0.0369 ± 0.0027
σ̂b ± 1.96SE(σ̂b) : 0.0159 ± 0.0030
J∗ = 87.4619, σ̂2 = 3.1236
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PAR(2,128) Results Excluding December 11 Data
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Summary and Ongoing Work

We have demonstrated how mathematical and statistical tools can
be used to gain insight into the early growth dynamics of shrimp.

We are working on improving the model predictions to the shrimp
population data by considering different parametric and
non-parametric approaches [Banks and Davis 2005] in the GRD
model.

Following the work of Seber and Wild, we are also working on fully
developing the mathematical and asymptotic statistical theory
(“functional” confidence bands) for OLS inverse problems where
the parameter of interest is a probability distribution.

We would also like to determine if the confidence bands
constructed in the non-parametric approximation methods (not
discussed here today) are converging to some “true” smooth
confidence bands.
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