Hydrodynamic Simulations of Colloidal Suspensions with Short-Range Attraction and Long-Range Repulsion

Michael Bybee

Department of Chemical and Biomolecular Engineering University of Illinois at Urbana-Champaign

DOE CSGF Annual Fellows' Conference Washington, DC – June 18, 2008

Colloidal Suspensions

- Nanometers to microns
- Spheres, platelets, ...
- Complex rheology and phase behavior
- Applications
 - Paints, inks, coatings
 - Pharmaceuticals
 - Foodstuffs
 - Personal care products
 - Ceramic processing
- Novel Materials
 - Direct writing
 - Photonic band-gap crystals
 - Chemical and biological sensors

Interparticle Interactions

Microstructure & Dynamics

Macroscopic Properties & Behavior

Anisotropic Particles (Mock and Zukoski, 2005)

11.0mm x60.0k SE(M) 1/7/2005 09:09

Direct-Writing of Photonic Band-Gap Crystal (Lewis, 2007)

Depletion Attraction: Colloid-Polymer Mixtures

5

• Strength (ε_A) ~ concentration of polymer

• Range (δ_A) ~ size of polymer

Electrostatic Repulsion: Charged Colloids

Total Interparticle Potential

5

Stokesian Dynamics

• Approximation to resistance tensor (Brady and Bossis 1988)

- Original Stokesian Dynamics, Cost ~ $O(N_{\rm P}^{-3})$
- Particle-Mesh-Ewald (PME) (Guckel 1999, Viera 2002)
- Preconditioned GMRES
- Brownian iterative square root
- PME Stokesian Dynamics, Total Cost ~ $O(N_{\rm P} \log N_{\rm P})$

Fast Lubrication Dynamics

• Approximation to resistance tensor

$$D_s^s = \frac{kT}{3N_{\rm P}} \left\langle \operatorname{tr} \left(\boldsymbol{R}^{-1} \right) \right\rangle$$

- MINRES
- Brownian analytical square root
- Total cost ~ $O(N_{\rm P})$
- ~200 times faster than PME Stokesian Dynamics ($N_{\rm P}$ =1000)

$$\rightarrow$$

System Parameters

- Volume fraction, $\phi = 0.20$
- Short-range attraction

$$- \delta_{\rm A}/a = 0.086$$

$$- \varepsilon_{\rm A}/kT = 0 - 71.1$$

- Long-range repulsion
 - (*ka*)⁻¹ = 1.55

$$- \varepsilon_{\rm R}/\varepsilon_{\rm ref} = 0 - 1 \qquad (\varepsilon_{\rm ref}/kT = 37.0)$$

- Dynamic simulations
 - 1000 particles
 - 3D periodic boundaries
 - Hard-sphere initial configuration
 - No ambient flow

- Duration,
$$1600t_{\rm B}$$
 $(t_{\rm B} = 6\pi\mu a^3/kT = 8.2 \text{ s})$

A: Microstructure

Fluid

Fluid-Crystal Phase Separation

$\epsilon_R/\epsilon_{ref}=0.0,\,\epsilon_A/kT{=}\,5.4$

A: Microstructure

13

A: Microstructure

15

A+R: Bond Formation and Cluster Growth

II.

Time scale for bond formation
$$\sim t_{\rm B} \exp\left(\frac{\epsilon_R}{kT}\right)$$

Time scale for bond breakup $\sim t_{\rm B} \exp\left(\frac{\epsilon_A}{kT}\right)$

A+R: Maximum Cluster Size

 $\epsilon_A/kT = 29.6$

18

A+R: Maximum Cluster Size

Cluster Growth

Conclusion

- Summary
 - Fluids, crystals, clusters, gels
 - Wide range of microstructures and dynamics
 - Increasing $\mathcal{E}_{R} \rightarrow$ thinner structures, longer time scales

Interparticle Microstructure & Macroscopic Properties & Behavior

- Future Work
 - Explore gel rheology (elastic modulus, viscosity, response to and relaxation from shear)
 - Interleave Stokesian Dynamics for rheological calculations
 - Importance of hydrodynamic interactions

(Stokesian vs. Fast Lubrication vs. Brownian Dynamics)

Acknowledgements

- Jonathan Higdon, adviser
- DOE Computational Science Graduate Fellowship
- Krell Institute
- NCSA for computer time

A: Equilibrium Phase Diagram

A+R: Equilibrium Phase Diagram

A+R: Mean Square Displacement

A+R: Localization Length

