Origami, Linkages, & Polyhedra: Folding with Algorithms

Erik Demaine, MIT
New Book

- www.gfalop.org
- Appearing this month
- Cambridge University Press
- ~600 pages
Geometric Folding

- Linkages (1D)
- Paper (2D)
- Polyhedra (3D)
Folding is Everywhere: Linkages

Mechanics

Robotics

Graphics

Biology

[Leclercq, Akkouche, Galin 2001]

HIV protease
Folding is Everywhere: Paper

Origami

Deployable structures

Airbags
Folding is Everywhere: Polyhedra

Sheet-metal manufacturing

Reconfigurable robotics, self-assembly, nanomanufacturing
Geometric Folding

- Linkages (1D)
- Paper (2D)
- Polyhedra (3D)
Linkages

How to Draw a Straight Line;
A Lecture on Linkages.

London:
Macmillan and Co.
1877.

[The Right of Translation and Reproduction is Reserved.]
Basic Questions about Linkages

Given a linkage...

- **Rigidity:**
 - Does the linkage move at all?

- **Universality:**
 - Into what configurations can it fold?

- **Motion planning:**
 - How do we get there?
Rigidity

- What linkages can move at all?
- **Rigid frameworks**: buildings, bridges, etc.

[Big Dig in Boston]

[Chubynsky, Hespenheide, Jacobs, Kuhn, Lei, Menor, Rader, Thorpe, Whiteley, Zavodszky 2003]
Rigidity

• What linkages can move at all?
 - **Known**: Characterization in 2D [Laman 1970]
 - **Unsolved**: Most problems in 3D
Universality

- Can a linkage move universally between any two configurations?

- Wire bending
- Hydraulic tube bending
- Robotic arm folding
Universality

- Can a chain linkage move universally between any two configurations?
 - Yes in 2D
 [Connelly, Demaine, Rote — FOCS 2000]
 - No in 3D
 [Cantarella & Johnston 1998]
 - Yes in 4D
 [Cocan & O’Rourke 2002]
Universality: Unfolding 2D Chains
[Cantarella, Demaine, Iben, O’Brien — SoCG 2004]
Motion Planning
[Iben, O’Brien, Demaine — SIGGRAPH 2004, SoCG 2006]

- Find short motion from A to B (if possible)
- Universality results give new insight into cases of interest, e.g., polygon morphing
Challenge in 3D

- **3D chains can be locked:**
 [Cantarella & Johnston 1998]

- **Unsolved:** Which 3D chains are locked?

- **Known:** Motion planning of 3D chains is computationally intractable
 [Alt, Knauer, Rote, Whitesides 2004]
Proteins

- DNA encodes proteins in genetic code
- Proteins are “fundamental building blocks of life”
Protein Folding

Primary protein structure
is a sequence of a chain of amino acids

Secondary protein structure
occur when the sequence of amino acids
are linked by hydrogen bonds

Tertiary protein structure
occur when certain attractions are present
between alpha helices and pleated sheets.

Quaternary protein structure
is a protein consisting of more than one
amino acid chain.
Importance of Protein Folding

- Geometry of a protein folding is an important aspect of its behavior.
- Prediction of protein folding, and synthesis of proteins with desired foldings, are central problems in computational biology.
 - Drug design
 - Preventing diseases (e.g., Alzheimer’s, mad-cow disease, cystic fibrosis, some forms of cancer)
Mechanics of Protein Folding

- Protein backbone is roughly a 3D chain with fixed-angle constraints

- Natural question:
 - 3D chains are hard to fold
 - How does nature fold proteins so easily?
Mechanics of Protein Folding

Why do proteins fold easily?

Possible answer:
- **Ribosome** constructs proteins, enforcing geometric constraints

[Nissen, Hansen, Ban, Moore, Steitz — Science 2000]
Mechanics of Protein Folding

- Why do proteins fold easily?
- Possible answer:
 - Ribosome constructs proteins, enforcing geometric constraints
- Cone model: [Demaine, Langerman, O’Rourke 2006]
 - All producible states can reach each other
 - Flattenable
 - Helical canonical state
Geometric Folding

Linkages
(1D)

Paper
(2D)

Polyhedra
(3D)
Origami

- Perhaps as old as paper itself (105 AD)
- Revolution in complex origami design over past ~25 years
Black Forest Cuckoo Clock by Robert Lang

Mask by Eric Joisel

Bat by Michael LaFosse

Pangolin by Eric Joisel

Photos from Origamido: Masterworks of Paper Folding
Roosevelt Elk, opus 358

Mt Diablo Tarantula, opus 481

Dancers, opp. 457 & 458

Hermit Crab

Tree Frog, opus 280

Koi, opus 425

Models & photos by Robert Lang
Explosion in technical origami thanks in part to growing mathematical and computational understanding of origami.
Theorem: Any 2D or 3D shape can be folded from a square of paper

[Demaine, Demaine, Mitchell 1999]
• **Algorithm** to fold optimal origami “base” with desired stick-figure projection

[Lang 1996–2006; Lang & Demaine 2006]
Folded States vs. Folding Motions

- **Folded state**: origami model
- **Folding motion**: how you got there

Every folded state can be made by a folding motion: No "locked origami"
[Demaine, Devadoss, Mitchell, O’Rourke 2004]
Paper Thickness
[Galivan 2001]

- Analysis of paper “loss” from repeatedly folding in half
- \(\frac{3}{4} \)-mile long paper folds in half 12 times!
Fold-and-Cut Problem

- Fold a sheet of paper flat
- Make one complete straight cut
- Unfold the pieces

- What shapes can result?
Fold-and-Cut Result

- Any collection of straight cuts can be made by folding flat & one straight cut

[Demaine, Demaine, Lubiw 1998]
[Bern, Demaine, Eppstein, Hayes 1999]
Deployable Structures

- Existing design ad hoc
- Unsolved: techniques & algorithms to design

[You & Kuribayashi 2003]

[Lang & LLNL 2002]
Origami Flashers [Jeremy Shafer]
Origami Flashers

[Jeremy Shafer]
Self-Folding Origami: Pleated Hyperbolic Paraboloid
Circular Variation from Bauhaus
Circular Variations [Demaine & Demaine]
Simulating Paper Folding
[Demaine, Demaine, Fizel, Ochsendorf 2006]

- Particle-spring simulation of forces in paper: elasticity and crease “failure”
Geometric Folding

Linkages (1D)

Paper (2D)

Polyhedra (3D)
Unfolding Polyhedra

- Given 3D polyhedron
- Cut surface & unfold
- No overlap

Goals:
- Minimum cutting (⇒ minimum gluing)
- Efficient layout

[Lundström Design]
Theory of Unfolding Polyhedra

- Focus on one-piece unfoldings
- Convex polyhedra (no “dents”)
 - Known: Always have a one-piece unfolding
 [Sharir & Schorr 1986; Aronov & O’Rourke 1991]
 - Unsolved: By cutting only along edges?
 [Dürer 1525]
Theory of Unfolding Polyhedra

• Focus on one-piece unfoldings
• Nonconvex polyhedra
 - Unsolved: Always have a one-piece unfolding?
 - Known: Not possible just by edge cuts [Bern, Demaine, Eppstein, Kuo, Mantler, Snoeyink 2003]
Folding Polygons into Polyhedra

- Given polygon of paper
- Fold arbitrarily
- Glue boundary together
- What **convex** polyhedra can be made?
Folding Polygons into Polyhedra

- Efficient algorithms to find all gluings into convex polyhedra
 [Demaine, Demaine, Lubiw, O'Rourke 2002]
 - **Unsolved:** Efficient algorithms to find actual polyhedra formed
Reconfigurable Robotics

- Crux of many reconfigurable robots is the attach/detach mechanism
- Hinged polyhedra suggest that components can remain connected [O’Rourke]
Self-Assembly & Nanomanufacturing

- Millimeter-scale “self-working” 2D hinged polygons
 [Mao, Thalladi, Wolfe, Whitesides, Whitesides 2002]
Self-Assembly & Nanomanufacturing

- Generalization to arbitrary desired 3D shapes via hinged polyhedra (currently at macro level) [Demaine, Griffith, Jacobson 2007]
DNA Folding

- Synthetic DNA to fold into desired polygon [Rothemund — Nature 2006]