### Making Schrödinger cat states from Bose Einstein Condensates (BECs) with massively parallel processors

Computational Science Graduate Fellowship (CSGF) Conference June 22, 2005

> Mary Ann Leung University of Washington

University of Washingto

### What is a Schrödinger Cat state?

- Thought experiment to illustrate strange consequences of applying quantum mechanics to large objects:
  - cat in entangled state
  - simultaneously dead and alive
- Entangled states have been detected in lab:
  - Photons
  - Four ions
  - Cold atoms in optical lattices
  - Superconducting Josephson Junction loops



Source: In Search of Schrodinger's Cat, John Gribbin

University of Washingte

## **Brief intro to gaseous BEC**

- 1924: New state of matter predicted by Bose & Einstein
- 1995: First realized in lab by Cornell & Weiman at CU Boulder & NIST and Ketterle at MIT
- 2001: Nobel prize awarded to Cornell, Ketterle, Wieman



Satynathra Bose



Albert Einstein



#### The Nobel Prize in Physics 2001



Eric A. Cornell



Wolfgang Ketterle



Carl E. Wieman

University of Washingte

### What is Bose-Einstein Condensation?



- Normally, when gases cooled undergo phase transition to liquid or solid
- However, when gases are really cold and very dilute, undergo special phase transition called Bose-Einstein Condensation
   BEC: 10<sup>15</sup> particles/cm<sup>3</sup> vs.
  - air: 10<sup>19</sup> particles/cm<sup>3</sup> air
- Condense into lowest energy state
- Described by single wavefunction
- Macroscopic quantum object

University of Washingtor

### Fermions and bosons and the Pauli exclusion principle

E

 $\Psi_1$ 

E↑



**Fermions** 

Bosons

University of Washingtor

## Why interesting?

- Macroscopic nature of BEC makes it ideal for exploring fundamental properties of quantum mechanics such as entangled states
- Entangled states are essential resource for quantum computing:
  - Classical bits are on OR off
  - Quantum bits are on AND off
- Still a long way to go but...



University of Washingto

## Schrödinger cat states and BEC

### Why try to make Schrödinger cat states with a BEC?

- Added stability?
  - · coherence properties
  - macroscopic nature
- How can we generate Schrödinger cat states with a BEC?
  How large of a Schrödinger cat state can we generate?



## Background theory: BEC in a double well



- Phys. Rev. A.. 71, 23615, 2005, Mahmud, K., Perry, H., Reinhardt, W.P.

University of Washingto

# **Schrödinger Equation**

#### • Time Dependent:



### Bose Hubbard Hamiltonian

- tunneling
- single particle energy
- particle interaction energy



University of Washingto

# **Fock basis states** General form: $\left|\Psi(t)\right\rangle = \sum_{n_{L}} c_{n_{L}}(t) \left|n_{L}, N - n_{L}\right\rangle$ $n_{L=0}$ For 3 particles in two wells $|\Psi\rangle = c_1|3,0\rangle + c_2|2,1\rangle + c_3|1,2\rangle + c_4|3,0\rangle$









### Finding the eigenvectors & eigenvalues



#### How can we generate these highly excited states?

University of Washingtor

## **Phase imprinting**



Source: Science 287, 2000, 97

University of Washington

Laser light

## Time Evolve into cat state



University of Washington

## **Evolution of three well system**



## **Evolution of 4-well system**



### **Extension to supercomputers**



Submitted to Phys Rev A., Mahmud, K., Leung, M., Reinhardt, W.P.

#### Environment: - LBNL, seaborg



Development platform:
 PETSC
 NEDSC'S TRM SE

NERSC's IBM SP, Seaborg, has 6,080 CPUs

University of Washingto

## **Computational tasks**

 Determine non-zero matrix entries
 Find lowest engery eignestate by complex time evolution
 Phase imprint lowest energy states
 Time propagate phase imprinted states to follow dynamics

## Scaling issues

#### 4-Well System

$$\sum_{j} [H]_{ij} c_j(t) = i \frac{dc_i(t)}{dt}$$

where H is an N by N matrix with  $N = \frac{(n+w-1)!}{n!(w-1)!}$ where : n = number of particles, w = number wells

| n   | Ζ         |
|-----|-----------|
| 16  | 969       |
| 32  | 6,545     |
| 64  | 47,905    |
| 128 | 366,145   |
| 256 | 2,862,209 |

### Hamiltonian matrix sparsity pattern

#### Sparsity pattern

- 52 particles in 3 wells
- 1431x1431 matrix
- 9,699 non-zero entries



Sparsity pattern

 28 particles in 4 wells

 4495x4495 matrix

 36,975 nonzero entries



#### Sparsity pattern

- 15 particles in 5 wells
- 3876x3876 matrix
- 34,476 nonzero entries



#### Sparsity pattern

- 10 particles in 6 wells
- 3003x3003 matrix
- 27,027 nonzero entries



## **Time propagation**

 $\sum_{i} [H]_{ij} c_j(t) = i \frac{dc_i(t)}{dt}$ 

Computational challenge:
 - Sparse matrix-vector multiplication

University of Washington

## Speed up: time propagation



#### **Unexpected computational challenge**

### Computing matrix requires:

- Determining all non-zero matrix entries
  - a single particle moving from one well to another well
  - number of particles in well

$$N = \frac{(n+w-1)!}{n!(w-1)!}$$

University of Washingto

# 128 particles in 4 wells

Matrix dimensions: 366,145 × 366,145
~ 2 × 10<sup>12</sup> IF statements
~ 5 × 10<sup>11</sup> assignments
Rough estimate for sequential algorithm: 33 days



ersity of Washington

#### Parallel algorithm for matrix generation





University of Washingto

#### Parallel algorithm: 128 particles in 4 wells

# Matrix dimensions: 366,145 × 366,145 ~ 2 × 10<sup>12</sup> IF statements ~ 5 × 10<sup>11</sup> assignment statements

Rough estimate for sequential algorithm: 33 days





University of Washingto

## Speed up: parallel algorithm

# 128 particles in 4 wells, 366,145 x 366,145 1-7 nodes, 16 proc/node



University of Washington

# **Evolution of 4-well system**



#### Workstation: 16-32 particles

University of Washington



## Summary

 We are using high performance computing to investigate Schrödinger cat states in the BEC,



 may some day be useful in developing new high performance computing techniques (quantum computing)



## Acknowledgements

Reinhardt Group: William P. Reinhardt

Present members:

- David Masiello

Past members:

- Lincoln Carr
- Kahn Mahmud
- Sarah McKinney
- Dorothy Caplow
- Heidi Perry (undergraduate)

Funding:

Department of EnergyKrell Institute

A little help from my friends:

- Andri Arnaldsson
- Colleen Craig
- August Depner
- Kim Gunnerson
- William Stier

University of Washingto