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What is a Schrödinger Cat state?
• Thought experiment to 

illustrate strange 
consequences of applying 
quantum mechanics to large 
objects:
– cat in entangled state
– simultaneously dead and alive

• Entangled states have been 
detected in lab:
– Photons
– Four ions
– Cold atoms in optical lattices
– Superconducting Josephson

Junction loops

Source:  In Search of Schrodinger's 
Cat, John Gribbin



University of Washington Reinhardt Group

Brief intro to gaseous BEC

Satynathra Bose Albert Einstein

• 1924:  New state of 
matter predicted by
Bose & Einstein

• 1995: First realized 
in lab by Cornell &
Weiman at CU 
Boulder & NIST and 
Ketterle at MIT

• 2001: Nobel prize 
awarded to Cornell,
Ketterle, Wieman
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What is Bose-Einstein Condensation?

• Normally, when gases cooled 
undergo phase transition to liquid 
or solid 

• However, when gases are really 
cold and very dilute, undergo 
special phase transition called
Bose-Einstein Condensation
– BEC: 10^15 particles/cm3 vs. 
– air: 10^19 particles/cm3 air

• Condense into lowest energy state
• Described by single wavefunction
• Macroscopic quantum object
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Fermions and bosons and the
Pauli exclusion principle
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Why interesting?
• Macroscopic nature of BEC makes 

it ideal for exploring fundamental 
properties of quantum mechanics 
such as entangled states

• Entangled states are essential 
resource for quantum computing:
– Classical bits are on OR off

– Quantum bits are on AND off

• Still a long way to go but…
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Schrödinger cat states and BEC

• Why try to make Schrödinger cat 
states with a BEC?
– Added stability?

• coherence properties
• macroscopic nature

• How can we generate Schrödinger
cat states with a BEC?

• How large of a Schrödinger cat 
state can we generate?
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Background theory:  
BEC in a double well

• Simplest lattice configuration 
– J. Phys B., 36, 2003, L265-L272, Mahmud, K., 

Perry,H., Reinhardt, W.P.
– Phys. Rev. A.. 71, 23615, 2005, Mahmud, K., 

Perry,H., Reinhardt, W.P.
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Schrödinger Equation

• Time Dependent:

• Bose Hubbard Hamiltonian
– tunneling
– single particle energy
– particle interaction energy

dt
td

itH
)(

)(ˆ Ψ
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Fock basis states
• General form:

• For 3 particles in two wells
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Finding the eigenvectors & eigenvalues

– Lowest states are 
Gaussian-like

nL nL

cnl

– Highest states are 
“cat-like”

nL nL

cnl

How can we generate these highly excited states?

5,3535,5 21 cc ±
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Phase imprinting

BEC

Mask

Laser light

Source:  Science 287, 2000, 97
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Time Evolve into cat state
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Evolution of three well system
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Evolution of 4-well system
Two well
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Extension to supercomputers
Submitted to Phys Rev A.,
Mahmud, K., Leung,M., 
Reinhardt, W.P.

NERSC's IBM SP, Seaborg, has 6,080 CPUs

Environment:
– LBNL, seaborg

Development platform:
– PETSc
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Computational tasks

1. Determine non-zero matrix entries
2. Find lowest engery eignestate by 

complex time evolution
3. Phase imprint lowest energy states 
4. Time propagate phase imprinted 

states to follow dynamics



University of Washington Reinhardt Group

Scaling issues
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Hamiltonian matrix sparsity pattern
Sparsity pattern

28 particles in 
4 wells
4495x4495 
matrix
36,975 non-
zero entries

Sparsity pattern
52 particles in 
3 wells
1431x1431 
matrix
9,699 non-zero 
entries

Sparsity pattern
10 particles in 
6 wells
3003x3003 
matrix
27,027 non-
zero entries

Sparsity pattern
15 particles in 
5 wells
3876x3876 
matrix
34,476 non-
zero entries
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Time propagation

[ ]
dt
tdcitcH i

j
jij

)()( =∑
• Computational challenge:  

– Sparse matrix-vector multiplication
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Speed up: time propagation

128 particles in 4 wells, 
366145 x 366145
2-7 nodes with 16 
proc/node

• 84 particles in 4 wells, 
105,995 x 105,995

log(propagation time) vs. log(processors)

y = -1.0365x + 2.3821

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

log(number processors)

lo
g(

tim
e 

(m
in

))

1 2               4                8                16   
number processors

log(propagation time) vs. log(number nodes)

y = -0.6049x + 1.4469

0
0.2
0.4
0.6
0.8
1

1.2
1.4

0 0.2 0.4 0.6 0.8 1

log(number nodes)

lo
g(

pr
op

ag
at

io
n 

tim
e 

(m
in

))

2            3          4      5        7
number nodes



University of Washington Reinhardt Group

Unexpected computational challenge

• Computing matrix requires:
– Determining all non-zero matrix 
entries 
• a single particle moving from one well to 
another well

• number of particles in well
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128 particles in 4 wells

• Matrix dimensions: 
366,145 x 366,145

• ~ 2 x 1012 IF statements
• ~ 5 x 1011 assignments
• Rough estimate for 

sequential algorithm:  
33 days
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Parallel algorithm for matrix generation
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Parallel algorithm: 128 particles in 4 wells

• Matrix dimensions: 
366,145 x 366,145

• ~ 2 x 1012 IF statements
• ~ 5 x 1011 assignment 

statements
• Rough estimate for 

sequential algorithm:  33 
days

• Actual time for parallel  
algorithm on 112 processors:  
33 min
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Speed up: parallel algorithm

• 128 particles in 4 wells, 366,145 x 366,145
1-7 nodes, 16 proc/node

log(matrix time) vs. log (number nodes)

y = -0.9991x + 4.1422
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Evolution of 4-well system
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Summary
• We are using high 
performance computing to 
investigate Schrödinger cat 
states in the BEC, 

• may some day be useful in 
developing new high 
performance computing 
techniques (quantum 
computing)
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