Transitional Flow in a Stenosed Carotid Artery

CSGF Final Presentation Date: 6/21/2005

Seung E. Lee, MIT SangWook Lee, Univ. of IL at Chicago Francis Loth, Univ. of IL at Chicago Paul F. Fischer, Argonne National Lab

Outline

- Introduction
 - Background
 - Motivation
- Hexahedral Mesh generation
 - Simple O-grid mesh
 - High quality hexahedral mesh
- Pulsatile simulation in stenosed carotid
 - Introduction
 - Method
 - Result
- Validation
- Conclusion

Introduction

- Fluid mechanics of blood is shown to be important in arterial disease localization and progression [Giddens *et al.* 1993]
- Wall shear stress (WSS) Localization of atherosclerosis [Ku et al. 1985, Zarins et al. 1987]
- Flow oscillation, arterial wall vibration, and etc. [Glagov et al. 1988]
- We are especially interested in bifurcation geometries

Severe stenosis

Normal

- Many studies were done in normal (healthy) arterial bifurcations using both experimental and numerical simulations [Ku *et al.* 1987, Steinman *et al.* 1996]
- Diseased vessel may introduce disturbed (transitional) flow
- Disturbed (transitional) flow within vasculature may introduce additional health risks [Golledge *et al.* 2000]
 - Heart attack
 - Stroke
- Due to expensive computational cost of transitional flow, not many diseased bifurcations were studied
 - Idealized stenosed geometry [Long et al. 2001]
 - Severely stenosed on 2D projection [Stroud et al. 2002]

Objective

 Develop a methodology to translate a set of *in* vivo medical images to numerical solution of a full 3D pulsatile transitional flow

Numerical Method

- Spectral element method, "Nekton" [Patera 84, Maday & Patera 89]
 - High-order spectral elements (N ~ 5-15)
 - 3rd-order accurate in time

Minimal numerical dissipation/dispersion

- Direct Numerical Simulation
 - no turbulence modeling
 - does not require a separate model for different flow problems (carotid stenosis, coronary stenosis)

Only takes quad- (2D) or hex- (3D) based meshes

Outline

- Introduction
 - Background
 - Motivation
- Mesh generation
 - Simple O-grid mesh
 - High quality hexahedral mesh
- Pulsatile simulation in stenosed carotid
 - Introduction
 - Method
 - Result
- Validation
- Conclusion

Fourier-based non-shrinking smoothing

- A) A cross-section from medical image
- B) Nonshrinking Smoothing
- C) Comparison
- Developed by Fischer

O-Grid Meshing Scheme

Partition bifurcation into 3 branches via user defined dividing sections

Mesh Generation Challenges

Need a mesh with a low number of elements

Interior mesh geometry

 Interior element distribution can have a *huge* impact on matrix conditioning and iteration counts [Fischer *et al.* 2002]

Accurate surface representation & smoothing

Wall shear stress is very sensitive to surface details

Meshing Based On Conduction Heat Solution

1) Preliminary mesh from commercial meshing software (ICEM-CFD)

3) Define new meshing sections on the isosurface 2) Solve conduction heat transfer problem

Meshing Stenosed Carotid

Three heat conduction solutions Find the "principal" isosurfaces – isosurface through the insulated branch

Automatically determine Cutting surfaces

Mesh improvements

- Reduced number of elements: NEL ~ 2000
 High quality elements
 - Orthogonality
 - Minimal element deformation

How can we get away with such a crude mesh??

Outline

Introduction

- Background
- Motivation
- Mesh generation
 - Simple O-grid mesh
 - High quality hexahedral mesh
- Pulsatile simulation in stenosed carotid
 - Introduction
 - Method
 - Result
- Validation
- Conclusion

The Carotid Artery Bifurcation

Internal Carotid

- Common Carotid Artery (CCA)
- Internal Carotid Artery (ICA) - Supplies blood to the brain
- External Carotid Artery (ECA) - Supplies blood to the face

External Carotid

Common Carotid

Ultrasound velocity data

Grid independence test (Steady inlet)

- Comparison betweenN = 08 and N = 10
- Left = velocity
- Right = RMS

- Comparison betweenN = 10 and N = 12
- Left = velocity
- Right = RMS

Vorticity Animation In Stenosed Carotid

- Womersley inlet flow waveform from Ultrasound
- Constant flow split specification – 59:41 (ICA:ECA)
- Rigid wall
- N = 10
- K = 2544
- Computation time = 11 hrs with 256 processors

Vorticity at midplane

Vorticity at midplane Only first peak systole

Pressure Distribution

- Low pressure at the throat of stenosis
- Shown to cause collapsing of aterial wall [blah 2000]
- **Correlate sharp pressure drop with plaque** rupture vulnerability

Wall Shear Stress Distribution

- Distribution of very high and very low WSS
 typical value is around 1.5 N/m²
- Disease progression
- Damage endothelial cells and red blood cells
- Fatigue plaque to cause rupture
- Trigger thrombosis
- Correlation study needed

6 8 10 12 14 16 18 20

Turbulence Intensity

- High mixing intensity downstream of stenosis – activate platelet
- High mixing intensity in the recirculation zone

Outline

Introduction

- Background
- Motivation
- Mesh generation
 - Simple O-grid mesh
 - High quality hexahedral mesh
- Pulsatile simulation in stenosed carotid
 - Introduction
 - Method
 - Result
- Validation
- Conclusion

AV Graft Velocity Comparison (Inlet Re = 1060 & outlet Re = 1900)

Comparison with LDA measurements (Arslan 99) Steady Flow - Re = 1060

AV Graft Average Velocity Comparison (Inlet Re = 1820 & outlet Re = 3200)

Experimental

Velocity profile scaled to *in vivo* values.

Conclusion

- We have develop a methodology to translate a set of *in vivo* medical images to numerical solution of a transitional flow in a stenotic bifurcation
- Patient-specific, full cardiac cycle transitional flow calculation obtainable in 12 hours with 256 processors
- Quantification of flow parameters in stenosed carotid
- Consistent with experimental and other numerical observations

Future Goal

- Further research to correlate arterial disease with hemodynamic parameters
- **Non-invasive way to quantify Hemodynamic parameter**
 - Diagnostic tool
 - Predictive tool

Ooh...

Check out the vortex shedding frequency off of distal end of your stenosed internal carotid and magnitude of turbulence shearing... You definitely need an endarterectomy within next 23.7 days...

Acknowledgements

- Francis Loth, PhD
- Paul F. Fischer, PhD
- SangWook Lee, MS
- Krell Institute
- Funding
 - UIC Graduate Fellowship
 - Gates Millennium Scholarship
 - CSGF
- A very special thanks to...

Computational Science Graduate Fellowship

Coherent Vortical Structure

Image created by ANL Visualization Lab using the λ_2 criterion of Jeong & Hussain (JFM'95)

Velocity Time Trace in ICA

- Velocity fluctuation ~ 300 Hz
 - Within audible band (100 500 Hz)
- Time step used, dt = 1e-5, is much less than 1/300

Urms (Re=1820)

Turbulent intensities (Urms) in PVS scaled to in vivo values.

Coherent Vortical Structure

Transitional flow in PVS

Close-up of coherent vortical structures in PVS visualized with the λ_2 criterion of Jeong & Hussain $_{(\rm JFM'95)}$