The deep roots of volcanos: localization instabilities in a continuum model of magma dynamics

Richard F. Katz & Marc Spiegelman LDEO/Columbia University

With Ben Holtzman, Peter Kelemen (LDEO/CU), Barry Smith, Matt Knepley (ANL) and Craig Manning (UCLA)

Plate tectonics, volcanos and magma genesis

Chemical localization of magma

observations by Kelemen et al.

Mechanical localization of magma experiments by Holtzman et al.

PI-1020, olivine + chromite + 4% MQRB, γ = 3.5, P = 30-60 MPa

Olivine + chromite (4:1) + 4 vol% MORB, const. strain rate, $\gamma = 3.4$

Magma dynamics theory: key components

4-7 primary variables

with permeability $k_\phi \propto \phi^n$, shear viscosity η and bulk viscosity ζ .

$$\frac{\partial \phi}{\partial t} + \boldsymbol{\nabla} \cdot \left(\phi \mathbf{v} \right) = 0$$

1. Conservation of mass: pore fluid

$$\frac{\partial}{\partial t}(1-\phi) + \boldsymbol{\nabla} \cdot \left[(1-\phi)\boldsymbol{\mathsf{V}}\right] = 0$$

2. Conservation of mass: matrix solid

with permeability $k_\phi \propto \phi^n$, shear viscosity η and bulk viscosity ζ .

$$\frac{\partial \phi}{\partial t} + \boldsymbol{\nabla} \cdot \left(\phi \mathbf{v} \right) = 0$$

$$\frac{\partial}{\partial t}(1-\phi) + \boldsymbol{\nabla} \cdot \left[(1-\phi)\boldsymbol{\mathsf{V}}\right] = 0$$

2. Conservation of mass: matrix solid

$$\phi(\mathbf{v} - \mathbf{V}) = -\frac{k_{\phi}}{\mu} \left[\mathbf{\nabla} P - \rho_f \mathbf{g} \right]$$

 Conservation of momentum: pore fluid (Darcy's law)

with permeability $k_{\phi} \propto \phi^n$, shear viscosity η and bulk viscosity ζ .

$$\frac{\partial \phi}{\partial t} + \boldsymbol{\nabla} \cdot \left(\phi \mathbf{v} \right) = 0$$

$$\frac{\partial}{\partial t}(1-\phi) + \boldsymbol{\nabla} \cdot \left[(1-\phi)\boldsymbol{\mathsf{V}}\right] = 0$$

$$\phi(\mathbf{v} - \mathbf{V}) = -\frac{k_{\phi}}{\mu} \left[\mathbf{\nabla} P - \rho_f \mathbf{g} \right]$$

- 1. Conservation of mass: pore fluid
- 2. Conservation of mass: matrix solid
- 3. Conservation of momentum: pore fluid (Darcy's law)

- $\boldsymbol{\nabla} P = \boldsymbol{\nabla} \cdot \boldsymbol{\eta} \left[(\boldsymbol{\nabla} \mathbf{V}) + (\boldsymbol{\nabla} \mathbf{V})^T \right]$ $+ \boldsymbol{\nabla} \left(\zeta \frac{2\eta}{3} \right) \boldsymbol{\nabla} \cdot \mathbf{V} + \bar{\rho} \mathbf{g}$
- 4. Conservation of momentum: matrix solid (Stokes eqn)

with permeability $k_\phi \propto \phi^n$, shear viscosity η and bulk viscosity ζ .

• 2D finite volume discretization on a Cartesian staggered mesh.

- 2D finite volume discretization on a Cartesian staggered mesh.
- All codes use PETSc: Portable Extensible Toolkit for Scientific computation.

- 2D finite volume discretization on a Cartesian staggered mesh.
- All codes use PETSc: Portable Extensible Toolkit for Scientific computation.
- Implicit, simulataneous solution for all variables with Newton-Krylov-Schwartz method (typically GMRES and ILU preconditioner).

- 2D finite volume discretization on a Cartesian staggered mesh.
- All codes use PETSc: Portable Extensible Toolkit for Scientific computation.
- Implicit, simulataneous solution for all variables with Newton-Krylov-Schwartz method (typically GMRES and ILU preconditioner).
- $10^5 10^6$ degrees of freedom on 12–64 processors for 3-8 hours.

- 2D finite volume discretization on a Cartesian staggered mesh.
- All codes use PETSc: Portable Extensible Toolkit for Scientific computation.
- Implicit, simulataneous solution for all variables with Newton-Krylov-Schwartz method (typically GMRES and ILU preconditioner).
- $10^5 10^6$ degrees of freedom on 12–64 processors for 3-8 hours.
- Parallel semi-Lagrangian advection in development for PETSc.

Part 1: Chemical localization

Past work by Aharonov, Spiegelman, Kelemen, Fang & others

-- volcanos

--- volcanos

 $\Gamma \propto \frac{\phi \mathbf{w}}{\alpha} \frac{\partial C_f^{eq}}{\partial P}$

$$\Gamma \propto \frac{\phi \mathbf{w}}{\alpha} \frac{\partial C_f^{eq}}{\partial P}$$

Chemical Instability

--- volcanos

volcanos

$$\Gamma \propto \frac{\phi \mathbf{w}}{\alpha} \frac{\partial C_f^{eq}}{\partial P}$$

Chemical Instability

Verification of simulations

From Spiegelman, Kelemen & Aharonov, JGR 2001

What about subduction zones?

What about subduction zones?

What about subduction zones?

An unexpected result...

Part 2: Mechanical localization

Paintings by Ben Holtzman

Basic mechanics of shear bands, $\eta = \eta(\phi)$

Experiment and Computation

Linear Analysis

Verifying Simulation with Linear Analysis

Comparing simulations with experimental data

An emergent picture of magma dynamics

Painting by Ben Holtzman

The future: multi-scale subduction dynamics

Need robust, scalable multi-scale solvers. Multigrid? Adaptive grid refinement?

• Quantitative understanding of magma genesis requires computational models capable of resolving magma dynamics.

- Quantitative understanding of magma genesis requires computational models capable of resolving magma dynamics.
- Magmatic localization a natural result of reactive and rheological instabilities.

- Quantitative understanding of magma genesis requires computational models capable of resolving magma dynamics.
- Magmatic localization a natural result of reactive and rheological instabilities.
- Channelized flow modifies fluid transport rates, composition and temperature with observable consequences.

- Quantitative understanding of magma genesis requires computational models capable of resolving magma dynamics.
- Magmatic localization a natural result of reactive and rheological instabilities.
- Channelized flow modifies fluid transport rates, composition and temperature with observable consequences.
- May play a role in focusing of magma to volcanos.

- Quantitative understanding of magma genesis requires computational models capable of resolving magma dynamics.
- Magmatic localization a natural result of reactive and rheological instabilities.
- Channelized flow modifies fluid transport rates, composition and temperature with observable consequences.
- May play a role in focusing of magma to volcanos.

Computational challenges

• Localization problems are computationally demanding.

- Quantitative understanding of magma genesis requires computational models capable of resolving magma dynamics.
- Magmatic localization a natural result of reactive and rheological instabilities.
- Channelized flow modifies fluid transport rates, composition and temperature with observable consequences.
- May play a role in focusing of magma to volcanos.

- Localization problems are computationally demanding.
- Strong interaction of scales \rightarrow separation of length-scales probably not valid.

Thanks to:

