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Plate tectonics, volcanos and magma genesis




Chemical localization of magma
observations by Kelemen et al.
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Mechanical localization of magma
experiments by Holtzman et al.

P1-1020, olivine + chromite + 4% MORB, y= 3.5, P = 30-60 MPa

lenses network
(melt-depleted) (melt-rich)

Olivine + chromite (4:1) + 4 vol% MORB, const. strain rate, y = 3.4



Magma dynamics theory: key components
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Computational Method

e 2D finite volume discretization on a Cartesian staggered mesh.

e All codes use PETSc: Portable Extensible Toolkit for Scientific

computation.

e Implicit, simulataneous solution for all variables with Newton-
Krylov-Schwartz method (typically GMRES and ILU precondi-

tioner).

e 10°-10° degrees of freedom on 12-64 processors for 3-8

hours.

e Parallel semi-Lagrangian advection in development for PETSc.



Part 1: Chemical localization

Past work by Aharonov, Spiegelman, Kelemen, Fang & others
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Growth rate, o

Verification of simulations

From Spiegelman, Kelemen & Aharonov, JGR 2001

Linear Analysis Numerical Simulation
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What about subduction zones?
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An unexpected result...




Part 2: Mechanical localization

Paintings by Ben Holtzman
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Basic mechanics of shear bands, 7 = n(qb)
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What is the role of rheology?
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Experiment and Computation
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lenses | netwrk
(melt- depleted) (meIt-rlch)

Porosny (mulatlon),x =1.51

0.01 0.11 0.20

Perturbatlon Vort|C|ty (Slmulatlon), y— 1.51
TR

-5.58 -1.23 3.11



Linear Analysis

Growth rate of porosity, ds/dt
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Verifying Simulation with Linear Analysis

Linear Analysis Numerical Simulation
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Comparing simulations with experimental data
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An emergent picture of magma dynamics

Painting by Ben Holtzman
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The future: multi-scale subduction dynamics

Need robust, scalable multi-scale solvers. Multigrid?

Adaptive grid refinement?
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Conclusions

Quantitative understanding of magma genesis requires computational

models capable of resolving magma dynamics.

Magmatic localization a natural result of reactive and rheological in-

stabilities.

Channelized flow modifies fluid transport rates, composition and tem-

perature with observable consequences.

May play a role in focusing of magma to volcanos.

Computational challenges

Localization problems are computationally demanding.

Strong interaction of scales — separation of length-scales probably

not valid.
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