Phase field methods for flows with elastic membranes

Judith C. Hill

Department of Civil and Environmental Engineering Carnegie Mellon University Pittsburgh, PA

June 20, 2005

Howes Scholar Presentation

Sangria Project: simulation of flows with dynamic interfaces on multi-teraflops computers

Carnegie Mellon

J. Antaki, A. Cunha, G.Blelloch, E. Börner, O. Ghattas, J. Hill, C. Kadow, I. Malcevic, G. Miller, I.Pagani, S. Pav, N. Walkington

A. Mohan, K. Rajagopal

G. Burgreen, B. Griffith, M. Kameneva, R. Kormos, E. Sorenson, J. Wu

University of Washington

S. Green, G. Turkiyyah

Motivation

- 80,000 Americans awaiting organ transplantation; 8% can expect to die while waiting
- Artificial organs are the only hope for the majority in the foreseeable future
- Cut-and-try design is expensive, time-consuming, suboptimal
- Computer modeling and simulation permit computational testing and optimization of proposed designs prior to the initiation of expensive animal and clinical trials
- Computer modeling provides greater insight into the behavior of such systems, leading to superior designs

Motivating problem: hemodynamic devices

- "Streamliner" left ventricular assist device under development at UPMC
- Led by Jim Antaki
- Numerous advantages
 - Small size
 - Reliability
 - Low power consumption
 - Less invasive
 - Magnetic bearings
- Design challenge
 - Overcome tendency to shear red blood cells
- First animal implantation July 1998: 7X reduction in blood damage over previous prototype

Algorithms, & Computina

Motivating problem: hemodynamic devices

G. Burgreen and J. Antaki, 1996

- Extensive CFD modeling and optimization by Greg Burgreen
- Simulations based on macroscopic homogeneous flow models (Navier-Stokes)
- Major reductions in
 - stagnated flow regions (reduces thrombosis)
 - shear stresses (reduces hemolysis)
- But model is homogeneous: incapable of predicting variation in RBC concentration
- Are regions of high shear devoid of RBCs?
 - Bearing journals
 - Blade tip regions
- Macroscopic models fail in such regions; length scales too small

Mechanics, Algorithms, & Computing

J. Hill

- Microstructural blood flow modeling
 - large relative motion between cells —
 - large deformations of cellular membranes —

Computational model of fluid-solid mixture (Malcevic, 2001)

Electron micrograph of blood flow in 12μ m ateriole (Rodin, 1972)

Challenges

- Physical
 - Continuum mechanics models for elastic interfaces in fluid flow
 - Stable numerical approximations for resulting fluid-structure interaction problem
- Algorithmic
 - Defining the interface between the cell and plasma in time
 - Parallel numerical algorithms for the coupled system
 - Implementation and scaling on parallel machines

Algorithms, & Computing

- A phase field model for two immiscible fluids
- Introduction of membrane into framework
- Examples
- Conclusions

- A phase field model for two immiscible fluids
- Introduction of membrane into framework
- Example Simulations
- Conclusions

Coordinate	Interface Description			
Framework	Implicit	Explicit		
		Overset Meshes		
Lagrangian	Domain Decomposition			
		Interface-Conforming Grids		
	Volume of fluid	Immersed boundary		
Eulerian	<u>Level-Set</u>	Immersed interface		
	Phase field	Fictitious Domain		

Coordinate Frameworks

- Lagrangian description
 - Interface representation embedded in material description of flow
 - Interfaces are well-resolved and remain sharp
 - Mesh convects and deforms with flow
 - But mesh quickly becomes distorted, and dynamic remeshing becomes necessary
 - Particularly difficult in parallel, 3D —
- Eulerian description
 - Fixed grid —
 - Straightforward in parallel
 - Interfaces approximately resolved through some other means

Lagrangian (material) framework

Eulerian (spatial) framework

• For all fluids, we require that the *balance of momentum* and the *balance of mass* hold.

$$ho (v_t + (v \cdot \nabla) v) - div (T) =
ho f$$

 $ho_t + div(
ho v) = 0$

Assumptions: - Newtonian behavior $T = -pI + \mu \left(\nabla v + (\nabla v)^T \right)$ - Incompressible fluid div(v) = 0

ıms,

J. Hill

- Definition of the phase variable:
 - Consider a domain with two immiscible fluids
 - To resolve the material properties, introduce the variable

$$\phi = \begin{cases} +1/2 & x \in \Omega_1(t) \\ -1/2 & x \in \Omega_2(t) \end{cases}$$

Material properties at a spatial point (x, t) are then defined as

$$\rho = \left(\frac{1}{2} + \phi\right)\rho_1 + \left(\frac{1}{2} - \phi\right)\rho_2$$

Carnegie Mellon

- Key observation for immiscible fluids:
 - In the Lagrangian description, ϕ is independent of time

$$\phi(x(X,t),t) = \phi_r(X)$$

- The material time derivative is zero, or

$$\phi_t + v \cdot \nabla \phi = 0$$

Lagrangian (material) framework

Carnegie Mellon

Equations governing two-fluid motion

 $n-1 - \overline{n}$

Strongly coupled
equations
$$\phi_t + v \cdot \nabla \phi = 0$$
 } "Balance of mass"
 $\rho(\phi) (v_t + (v \cdot \nabla) v) - div (T(\phi)) = \rho(\phi) f$
 $div(v) = 0$ } Balance of momentum

Non-linear term

Time schemes:

$$\phi_t + v^{n-1} \cdot \nabla \phi = 0$$

$$\rho^{n-1} \left(\frac{v^n - v^{n-1}}{\tau} + \left(v^{n-1} \cdot \nabla \right) v^n \right) - div \left(\widehat{T} \right) = \widehat{\rho} f^{n+1/2}$$

$$div(v^n) = 0$$

Numerical scheme

Algorithms, & Computina

- Simulation Information:
 - 60 x 60 elements
 - For discontinuous Galerkin calculations: biquartic basis functions
 - For standard Galerkin calculations: Taylor-Hood elements
 - 2000 time steps (Δt=0.005)
 - 4 processors of Lemieux (Alpha cluster at PSC)
- Problem Size:
 - DOF's in Φ : 57,600
 - DOF's in v,p: 33,000

- A phase field model for two immiscible fluids
- Introduction of membrane into framework
- Example Simulations
- Conclusions

• An elastic body:

$$F = \partial x_i / \partial X_\alpha$$

J. Hill

- Membrane Motion: $\chi_s : S_r \to S(t)$
- Differential: $d\chi_s : TS_r \to TS(t)$
- Membrane Deformation Gradient: If $v \in TS_r(X) \subset \Re^3$

 $d\chi_s v = F_s v \in \Re^3$ where $F_s = F(I - N \otimes N)$

 The momentum equation can be written in weak form as, including the Cauchy stress,

$$\int_{\Omega} \left[\rho(\phi) \left(v_t + (v \cdot \nabla) v \right) \cdot w + p \, div(w) + \mu(\phi) D(v) \cdot D(w) \right] d\Omega$$
$$\int_{S(t)} (1/J_s) D \mathcal{W}(F_s) \cdot (\nabla w) F_s = \int_{\Omega} \rho(\phi) f \cdot w$$

• The evolution of the membrane deformation gradient is

$$F_{st} + (v \cdot \nabla)F_s = (\nabla v)F_s$$

J. Hill

Membrane stresses: Phase field Approximation

• Level Set Representation

$$S(t) = x \in \Omega \,|\, \phi(x,t) = 0$$

• Phase field Approximation of Surface: $-1/2 < \phi < 1/2$

$$\int_{S_r} (...) dA = \int_{S(t)} (...) (1/J_s) da$$
$$= \int_{\Omega} (...) (1/J) |F^T \nabla \phi| dx$$

• Recall: J = det(F) = 1 if div(v) = 0

J. Hill

Eulerian form of conservation of momentum and mass eqns for a viscous incompressible fluid with a membrane at the interface

 $I = I = \nabla I = 0$

$$arphi_t + v \cdot
abla arphi = 0$$

Membrane Rotation $\begin{cases} (R_s)_t + (v \cdot
abla) R_s = W(v) R_s \\ (E_s)_t + (v \cdot
abla) E_s = R_s^T D(v) R_s \end{cases}$ Convection Equations

Navier-Stokes Equations

Membrane Stress

 $\rho(\phi) \left(v_t + (v \cdot \nabla) v \right) - div \left(-pI + \mu(\phi) D(v) \right)$

 $-div\left(4R_s \ C(E_s)R_s^T\right) = \rho(\phi)f$

div(v) = 0

Initial Conditions:

 $\phi(x,0) = \phi_0(x)$ Phase Function $R_s(x,0) = (I - N \otimes N) |\nabla \phi(x,0)|^{1/4}$ Membrane Rotation $E_s(x,0)=0$ Membrane Strain $v(x,0) = v_0(x)$ Velocities/Pressures

Eulerian form of conservation of momentum and mass eqns for a viscous incompressible fluid with a membrane at the interface

Time discretization schemes:

$$\phi_t + v^{n-1} \cdot \nabla \phi = 0$$

$$R_t + (v^{n-1} \cdot \nabla)R = W(v^{n-1})R$$

$$E_t + (v^{n-1} \cdot \nabla)E = (R^n)^T D(v^n)R^n$$

$$\begin{aligned} div(v^n) &= 0\\ \rho^{n-1} \left(\frac{v^n - v^{n-1}}{\tau} + \left(v^{n-1} \cdot \nabla \right) v^n \right) - div \left(-p^n I + \hat{\mu} D(v^n) \right) \\ &- div \left(R^n \ \mathbb{C}(E^n)(R^n)^T \right) = \hat{\rho} f^{n+1/2} \end{aligned}$$

Membrane Stress

Solve coupled momentum, strain equation for v_h^n and $E_{s_h}^n$ Galerkin in space, Backward Euler in time; Discontinuous Galerkin in space, time

- PETSc library of linear solvers, preconditioners used
- Parallel implementation in all cases

- A phase field model for two immiscible fluids
- Introduction of membrane into framework
- **Example Simulations**
- Conclusions

- Simulation Information:
 - 60 x 60 elements
 - For discontinuous Galerkin calculations: biquartic basis functions
 - For standard Galerkin calculations: Taylor-Hood elements
 - 2000 time steps (Δt=0.005)
 - 64 processors of Lemieux
- Problem Size:
 - DOF's in Φ 57,600
 - DOF's in R 230,400
 - DOF's in v,p 33,000
 - DOF's in E 230,400

Carnegie Mellon

- Simulation Information:
 - 2720 elements (h=0.025)
 - For discontinuous Galerkin calculations: biquartic basis functions
 - For standard Galerkin calculations: Taylor-Hood elements
 - 4800 time steps (Δt=0.0006)
 - 32 processors of Lemieux
- Problem Size:
 - DOF's in Φ 43,500
 - DOF's in R 174,100
 - DOF's in v,p 27,000
 - DOF's in E 174,100

Carnegie Mellon

- Simulation Information:
 - -60×60 elements
 - For discontinuous Galerkin calculations: biquartic basis fns.
 - For standard Galerkin calculations: Taylor-Hood elements
 - -2000 time steps ($\Delta t = 0.005$)
 - 32 processors of Lemieux
- **Problem Size:**
 - DOF's in Φ : 57,600
 - DOF's in R : 230,400
 - DOF's in E,v,p: 263,400

 $\lambda_1 = \lambda_2 = 2.5 * 10^4$

The falling drop example, revisited

- Simulation Information:
 - 16 x 16 x 16 elements
 - For discontinuous Galerkin calculations: triquartic basis functions
 - For standard Galerkin calculations: Taylor-Hood elements
 - 1000 time steps ($\Delta t=0.01$) —
- Problem Size:
 - DOF's in Φ 262,144 _
 - DOF's in v,p 112,724

- A phase field model for two immiscible fluids
- Introduction of membrane into framework
- Example Simulations
- Conclusions

- Physical Advantages
 - Incorporation of an elastic membrane into an Eulerian flow description
- Numerical & Computational Advantages:
 - Fixed mesh never requires remeshing
 - Not required to explicitly track the interface
 - All steps highly parallel
 - Parallel preconditioner that respects strong fluid-membrane coupling
 - Little change required to extend to 3-D —

Carnegie Mellon

- Mechanics
 - Addition of a phase field approximation of surface tension
 - Incorporation of bending stiffness into membrane model —
 - Experimental validation of elastic membrane
- Numerics
 - Scalability study of algorithm and implementation
 - Implementation of adaptive p- and h-refinement in space
 - Improvement of time discretization

- N. Walkington and O. Ghattas
- Funding:
 - DOE Computational Science Graduate Fellowship —
 - Sangria Project: NSF-ITR ACI 0086093

Questions

Algorithms, & Computing

J. Hill

J. Hill

Interface Conforming Example

Ivan Malcevic (CMU)

J. Hill

Level Set Example

J. Sethian (UC-Berkeley)

J. Hill

- Reversibility of Spiraling Fluid
 - Geometry: $\Omega = \{(x, y) \mid -1 \le x \le 1, -1 \le y \le 1\}$ —
 - Material Properties: $\rho_f = 0.5$ $ho_{s} = 1.0$ —
 - Imposed Velocity Field: $u_r = 0$ $u_{A} = r^{2}$
 - Simulation Information: _
 - 40 x 40 quadrilateral biguartic elements ($\Delta h = 0.05$)
 - 4000 time steps (Δt=0.0025)

 $t \in [0, 20]$

Time discretization

Numerical scheme

Algorithms, Computing

J. Hill

Solve ϕ equation for ϕ_h^n Discontinuous Galerkin in time, space

$$\phi_t + v \cdot \nabla \phi = \mathbf{0}$$

Weak Form:

$$\int_{\Omega} \phi \psi d\Omega \Big|_{t=0}^{T} - \int_{0}^{T} \int_{\Omega} \phi \left(\psi_{t} + v \cdot \nabla \psi \right) d\Omega dt + \int_{0}^{T} \int_{\partial \Omega_{out}} \phi \psi v \cdot n \, ds \, dt$$

$$= -\int_0^T \int_{\partial\Omega_{in}} \phi_{in} \psi v \cdot n \, ds \, dt$$

Discrete Scheme:

$$\int_{K} \phi_{h}(t^{n})\psi_{h}(t^{n}) - \int_{t^{n-1}}^{t^{n}} \int_{K} \phi_{h}\left((\psi_{h})_{t} + v^{n-1} \cdot \nabla\psi_{h}\right) \\ + \int_{t^{n-1}}^{t^{n}} \int_{\partial K} \left(\left(v^{n-1} \cdot n\right)^{+} \phi_{h} + \left(v^{n-1} \cdot n\right)^{-} \phi_{h_{-}}\right)\psi_{h} \\ = \int_{K} \phi_{h_{-}}(t^{n-1})\psi_{h}(t^{n-1})$$

June 2005

Carnegie Mellon

$$(R_s)_t + (v \cdot \nabla)R_s = W(v)R_s$$

Solve R_s equation for $R_{s_h}^n$ Discontinuous Galerkin in time, space

Weak Form: $\int_{\Omega} R_s \cdot S d\Omega \Big|_{t=0}^{T} - \int_{\Omega}^{T} \int_{\Omega} (R_s \cdot S_t + R_s \cdot (v \cdot \nabla) S) d\Omega dt$ $-\int_{0}^{T}\int_{\Omega} \left(W(v)R_{s}\cdot S\right)d\Omega dt$ $+\int_{0}^{T}\int_{\partial\Omega_{in}}R_{s}\cdot S\left(v\cdot n\right)\,ds\,dt=-\int_{0}^{T}\int_{\partial\Omega_{in}}R_{s_{in}}\cdot S\left(v\cdot n\right)\,ds\,dt$ Discrete Scheme: $\int_{\mathcal{K}} R_h(t^n) S_h(t^n) - \int_{t^{n-1}}^{t^n} \int_{\mathcal{K}} R_h\left((S_h)_t + \left(v^{n-1} \cdot \nabla \right) S_h \right) + W(v^{n-1}) R_h \cdot S_h$ $+ \int_{4n-1}^{t^{n}} \int_{\partial W} \left(\left(v^{n-1} \cdot n \right)^{+} R_{h} + \left(v^{n-1} \cdot n \right)^{-} R_{h_{-}} \right) S_{h_{-}}$ $= \int_{K} R_{h_{-}}(t^{n-1}) S_{h}(t^{n-1})$ **Carnegie Mellon**

Solve coupled momentum, strain equation for v_h^n and $E_{s_h}^n$ Galerkin in space, Backward Euler in time; Discontinuous Galerkin in space, time

$$\rho^{n-1}\left(v_t + \left(v^{n-1} \cdot \nabla\right)v^n\right) - div\left(-p^n I + \hat{\mu}D(v^n)\right)$$

$$A_{uu} \qquad -div\left(R^n C(E^n)(R^n)^T\right) = \hat{\rho}f^{n+1/2}$$

$$A_{uE}$$

$$-(R^n)^T D(v^n)R^n \qquad +E_t + (v^{n-1} \cdot \nabla)E = 0$$

$$\underbrace{-(R^n)^T D(v^n) R^n}_{A_{Eu}} \underbrace{+E_t + (v^{n-1} \cdot \nabla) E}_{A_{EE}} = 0$$

$$\left[\begin{array}{cc}A_{uu} & A_{uE}\\A_{Eu} & A_{EE}\end{array}\right]\left\{\begin{array}{c}u\\E\end{array}\right\} = \left\{\begin{array}{c}F_{u}\\F_{E}\end{array}\right\}$$

$$P = \begin{bmatrix} \hat{S}^{-1} & 0\\ -\hat{A}_{EE}^{-1}A_{Eu}\hat{S}^{-1} & \hat{A}_{EE}^{-1} \end{bmatrix} \begin{bmatrix} I & -A_{uE}\hat{A}_{EE}^{-1}\\ 0 & I \end{bmatrix}$$

$$\widehat{S} = \widehat{A}_{uu} - A_{uE}\widehat{A}_{EE}^{-1}A_{Eu}$$

$$\widehat{A}_{EE} = \int_{K} E_h(t^n) S_h(t^n) - \int_{t^{n-1}}^{t^n} \int_{K} E_h\left((F_h)_t + \left(v^{n-1} \cdot \nabla\right) F_h\right)$$

- Simulation Information:
 - 60 x 60 elements
 - For discontinuous Galerkin calculations: biquartic basis functions
 - For standard Galerkin calculations: Taylor-Hood elements
 - 2000 time steps (Δt=0.005)
 - 64 processors of Lemieux
- Problem Size:
 - DOF's in Φ 57,600
 - DOF's in R 230,400
 - DOF's in v,p 33,000
 - DOF's in E 230,400

Carnegie Mellon

		itera			
PEs	Elements	ϕ	ϕ	N-S	Time
	Time Steps	N-S			(s)
1	16 x 16	4,096	2.96	10.28	25
	75	$2,\!467$			
4	$32 \ge 32$	$16,\!384$	4.11	23.57	72
	150	$9,\!539$			
8	$45 \ge 45$	$32,\!400$	4.90	30.76	136
	225	$18,\!678$			
16	$64 \ge 64$	$65,\!536$	4.34	44.34	228
	300	$37,\!507$			
32	91 x 91	$132,\!496$	4.66	60.88	467
	450	$75,\!442$			

Isogranular comparison for simulations without the membrane

			DOF	iterations				
	PEs	Elements	ϕ	ϕ	\mathbf{R}	N-S	Time	
		Time Steps	R				(s)	
			N-S					
	1	8 x 8	1,024	1.34	$1,\!36$	20.21	32	
		38	2,467					
			659					
	4	$16 \ge 16$	4,096	3.93	3.97	40.85	97	
		75	$16,\!384$					
			2,467					
	16	$32 \ge 32$	$16,\!384$	4.20	4.20	72.40	335	
		150	$65,\!536$					
			9,539					
	32	$45 \ge 45$	32,400	4.03	4.06	112.90	919	
		225	$129,\!600$					
			$18,\!678$					
	64	$64 \ge 64$	$65,\!536$	4.05	4.13	137.62	1522	
	_	300	262,144	_		_	_	_
Isogranular comparison for, simulations with the membrane								

