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Radiation Modeling and Simulation

#® Radiation Particles
o Photons in thermal radiation
s Neutrons and Photons in nuclear reactors
» Neutrons, Photons, and Charged Particles in
medical physics
» Above plus Heavies in aerospace applications
» Above plus Neutrinos in supernovae

# Particle average behavior modeled by Boltzmann
equation
» Particle simulations by Monte Carlo
» Direct simulation by deterministic method

#® Equations have both hyperbolic and elliptic qualities
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Basic Transport
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Basic Transport
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HEDP Codes

Alegra-HEDP Kull Hydra
(IMC/FLD) (IMC/UCB) (IMC/FLD)
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Steady-State Transport Equation

% [ a4+ L

Q- —
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where

o = 1p(r, Q) is the radiation energy density,

() = direction of travel unit vector,

o = opacity (1/length),

o, = effective scattering cross section (1/length),
() = volume source.
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Example — Radiative Transfer

After operator-splitting,
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Example — Radiative Transfer

After operator-splitting,
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Example — Radiative Transfer

After operator-splitting,

- [0~ (05) %] - [
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Linearized semi-implicit substitution gives
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Asymptotic Diffusion Limit

Scattering dominates, and the transport equation

2

eﬂ-www:a;;%/dﬂlw L

as € — 0, limits to the diffusion equation

v _vw(o) + o, =Q
30

or using Fick’s Law,
V- -FO 45,40 =Q
where

F) — _pyy© — / QD 4q

47
D =1/30
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Diffusion Limit and Linear Solutions

Q.v¢+a¢:2—;/¢dﬂ’+%,
1

—V - —Vo+ 0,0 = Q.
30

# Transport — Diffusion in diffusion limit, 1>V is
linear-in-angle.

#® Transport and Diffusion equations share certain
low-order polynomial solutions, such as the linear
solution (¢ =x — u/o, ¢ = x).

#® These are not necessarily related. We show In the
diffusion limit that they are crucially linked.
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Importance of Diffusion Limit

# In diffusive regions, the radiation density varies an

O(1) amount in a diffusion length, w}T so the mesh

spacing should only have to resolve that scale.

# In transport dominated regions, the radiation density
can vary an O(1) amount over a mean free path,

A= % but in a diffusive region this becomes =.

# |[f a differencing scheme is designed to be accurate
only in the transport regime, excessively fine meshes
will be required to obtain accurate solutions in diffusive
regions.

# If a differencing scheme scales asymptotically to a
discretized version of the diffusion equation, then we
can use thick cells accurately in diffusive regions.
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History

® 1987 Larsen, Morel, and Miller — Discrete Asymptotic Analysis

Date CB/DFEM Multiple Balance

1991 | Adams,WLA BLD | Morel/Larsen MB2
Adams CB

1997 | Adams UCB

1998 | Adams/Nowak MG-UCB

1999 | Thompson Tet-UCB

2001 | Waering et al. Tri/Tet DFEM
Adams DFEM

2004 | Davidson Wachspress

Today | H. Stone & Adams PWLD | Hanshaw & Larsen MMB

$® 2003 Larsen — Polynomial Solutions Paper

Linear Solution Preservationand Diffusive Solutions for Sy, Radiation Transport — p.12/19



Skewed Kershaw Grids
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Diffusive Hump Problem
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Effective Diffusion Tensor Analysis

Define
by = (x — p/o) /4w
Then
Fopact(Vy) = —%/30 = —DX

Compute approximate v,, and 1, solutions to linear
problems, then calculate

Fu(v.) Fa(vy)
Fy(¢s) F(y)

Computational alternative to Larsen’s D(h) analysis.

Degp = —
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UCB Results for ¢ = 0.1
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Adams “Hard” Problem

MMB

UCB

Grid




Interpretation

® Stand-Alone Diffusion Discretization

» Does not have to preserve linear solutions, which
may be desirable (because of loss of symmetry).

s E.g. Morel & Shashkov’s local support operators
methods.

#® Transport Diffusion-Limit Diffusion Discretization
s Fallure to preserve linear-solutions yields gross
changes in flux.

» This stems from the angular dependence of the
linear solution.

s D.;r analysis reveals this is the dominant cause of
the diffusive solution degradation.

# |deally, a transport solution will always preserves the
linear solution; in the diffusion limit, this is a must!
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