Linear Solution Preservation and Diffusive Solutions for S_N Radiation Transport

Heath L. Hanshaw

University of Michigan (9/2001-4/2005)
Sandia National Laboratories (present)
June 22, 2005
Radiation Modeling and Simulation

- Radiation Particles
 - Photons in thermal radiation
 - Neutrons and Photons in nuclear reactors
 - Neutrons, Photons, and Charged Particles in medical physics
 - Above plus Heavies in aerospace applications
 - Above plus Neutrinos in supernovae

- Particle average behavior modeled by Boltzmann equation
 - Particle simulations by Monte Carlo
 - Direct simulation by deterministic method

- Equations have both hyperbolic and elliptic qualities
Basic Transport

Radiation Scattered to Direction Ω'

Isotropic Emission with Density $Q/4\pi$

$c = \sigma_s / \sigma$

$\lambda = 1 / \sigma$

Transmitted Radiation

Incident Radiation in Direction Ω
Basic Transport

Absorber

Boundary Layer

Thick Diffusive Object

Thin Streaming Region

Thick Diffusive Object
HEDP Codes

Alegra-HEDP
(IMC/FLD)

Kull
(IMC/UCB)

Hydra
(IMC/FLD)
Steady-State Transport Equation

\[\hat{\Omega} \cdot \nabla \psi + \sigma \psi = \frac{\sigma_s}{4\pi} \int_{4\pi} \psi \, d\Omega' + \frac{Q}{4\pi} \]

where

\[\psi = \psi(r, \hat{\Omega}) \] is the radiation energy density, \\
\[\hat{\Omega} = \text{direction of travel unit vector}, \]
\[\sigma = \text{opacity (1/length)}, \]
\[\sigma_s = \text{effective scattering cross section (1/length)}, \]
\[Q = \text{volume source}. \]
After operator-splitting,

\[
\frac{\partial (\rho e)}{\partial t} = \int_{4\pi} d\Omega \sigma (\psi - B)
\]

\[
\left(\frac{1}{c} \frac{\partial}{\partial t} + \hat{\Omega} \cdot \nabla \right) \psi = -\sigma \psi + \sigma B(T)
\]
Example – Radiative Transfer

After operator-splitting,

\[
\frac{\partial (\rho e)}{\partial t} = \left[C_v \frac{\partial T}{\partial t} = \left(C_v \frac{\partial T}{\partial B} \right) \frac{\partial B}{\partial t} \right] = \int_{4\pi} d\Omega \sigma (\psi - B)
\]

\[
\left(\frac{1}{c} \frac{\partial }{\partial t} + \hat{\Omega} \cdot \nabla \right) \psi = -\sigma \psi + \sigma B(T)
\]
After operator-splitting,

\[
\frac{\partial (\rho e)}{\partial t} = \left[C_v \frac{\partial T}{\partial t} = \left(C_v \frac{\partial T}{\partial B} \right) \frac{\partial B}{\partial t} \right] = \int_{4\pi} d\Omega \sigma (\psi - B)
\]

\[
\left(\frac{1}{c} \frac{\partial}{\partial t} + \hat{\Omega} \cdot \nabla \right) \psi = -\sigma \psi + \sigma B(T)
\]

Linearized semi-implicit substitution gives

\[
\left[\hat{\Omega} \cdot \nabla + \left(\sigma + \frac{1}{c\Delta t} \right) \right] \psi = \left(\frac{1}{1 + \frac{C_v}{4\pi \sigma \Delta t \frac{\partial B}{\partial T}}} \right) \frac{\sigma}{4\pi} \int d\Omega' \psi + q.
\]
Asymptotic Diffusion Limit

Scattering dominates, and the transport equation

\[\epsilon \hat{\Omega} \cdot \nabla \psi + \sigma \psi = \frac{\sigma - \epsilon^2 \sigma_a}{4\pi} \int d\Omega' \psi + \epsilon^2 \frac{Q}{4\pi}, \]

as \(\epsilon \to 0 \), limits to the diffusion equation

\[-\nabla \cdot \frac{1}{3\sigma} \nabla \psi^{(0)} + \sigma_a \psi^{(0)} = Q \]

or using Fick’s Law,

\[\nabla \cdot \mathbf{F}^{(1)} + \sigma_a \psi^{(0)} = Q \]

where

\[\mathbf{F}^{(1)} = -D \nabla \psi^{(0)} = \int_{4\pi} \hat{\Omega} \psi^{(1)} d\Omega' \]

\[D = 1/3\sigma \]
Transport \rightarrow Diffusion in diffusion limit, $\psi^{(1)}$ is linear-in-angle.

Transport and Diffusion equations share certain low-order polynomial solutions, such as the linear solution ($\psi = x - \mu/\sigma, \phi = x$).

These are not necessarily related. We show in the diffusion limit that they are crucially linked.
Importance of Diffusion Limit

In diffusive regions, the radiation density varies an $O(1)$ amount in a diffusion length, $\frac{1}{\sqrt{\sigma_\sigma_a}}$, so the mesh spacing should only have to resolve that scale.

In transport dominated regions, the radiation density can vary an $O(1)$ amount over a mean free path, $\lambda = \frac{1}{\sigma}$, but in a diffusive region this becomes $\frac{\epsilon}{\sigma}$.

If a differencing scheme is designed to be accurate only in the transport regime, excessively fine meshes will be required to obtain accurate solutions in diffusive regions.

If a differencing scheme scales asymptotically to a discretized version of the diffusion equation, then we can use thick cells accurately in diffusive regions.
History

1987 Larsen, Morel, and Miller → Discrete Asymptotic Analysis

<table>
<thead>
<tr>
<th>Date</th>
<th>CB/DFEM</th>
<th>Multiple Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>Adams, WLA, BLD</td>
<td>Morel/Larsen, MB2</td>
</tr>
<tr>
<td></td>
<td>Adams, CB</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>Adams, UCB</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>Adams/Nowak, MG-UCB</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>Thompson, Tet-UCB</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Waering et al., Tri/Tet DFEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adams, DFEM</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Davidson, Wachspress</td>
<td></td>
</tr>
<tr>
<td>Today</td>
<td>H. Stone & Adams, PWLD</td>
<td>Hanshaw & Larsen, MMB</td>
</tr>
</tbody>
</table>

2003 Larsen → Polynomial Solutions Paper
Skewed Kershaw Grids

\[\xi = 0.5 \quad \xi = 0.2 \quad \xi = 0.01 \]
Diffusive Hump Problem

() MMB, $\xi=0.5$

() MMB, $\xi=0.2$

() MMB, $\xi=0.01$

() UCB, $\xi=0.5$

() UCB, $\xi=0.2$

() UCB, $\xi=0.01$
Define

\[\psi_x = (x - \mu/\sigma)/4\pi \]

Then

\[F_{exact}(\psi_x) = -\hat{x}/3\sigma = -D\hat{x} \]

Compute approximate \(\psi_x \) and \(\psi_y \) solutions to linear problems, then calculate

\[D_{eff} = - \begin{bmatrix} F_x(\psi_x) & F_x(\psi_y) \\ F_y(\psi_x) & F_y(\psi_y) \end{bmatrix} \]

Computational alternative to Larsen’s \(D(h) \) analysis.
UCB Results for $\xi = 0.1$

D_{xx}

D_{yy}

ϕ
Adams “Hard” Problem

Grid

UCB

MMB
Interpretation

- Stand-Alone Diffusion Discretization
 - Does not have to preserve linear solutions, which may be desirable (because of loss of symmetry).
 - E.g. Morel & Shashkov’s local support operators methods.

- Transport Diffusion-Limit Diffusion Discretization
 - Failure to preserve linear-solutions yields gross changes in flux.
 - This stems from the angular dependence of the linear solution.
 - D_{eff} analysis reveals this is the dominant cause of the diffusive solution degradation.

- Ideally, a transport solution will always preserves the linear solution; in the diffusion limit, this is a must!
Acknowledgments

- DOE Computational Science Graduate Fellowship
- UM Center for Advanced Computing