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Radiation Modeling and Simulation

Radiation Particles
Photons in thermal radiation
Neutrons and Photons in nuclear reactors
Neutrons, Photons, and Charged Particles in
medical physics
Above plus Heavies in aerospace applications
Above plus Neutrinos in supernovae

Particle average behavior modeled by Boltzmann
equation

Particle simulations by Monte Carlo
Direct simulation by deterministic method

Equations have both hyperbolic and elliptic qualities
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Basic Transport

Inciden tion
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Basic Transport
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HEDP Codes

Alegra-HEDP Kull Hydra

(IMC/FLD) (IMC/UCB) (IMC/FLD)
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Steady-State Transport Equation

Ω̂ · ∇ψ + σψ =
σs
4π

∫

4π

ψ dΩ′ +
Q

4π

where

ψ = ψ(r, Ω̂) is the radiation energy density,

Ω̂ = direction of travel unit vector,
σ = opacity (1/length),
σs = effective scattering cross section (1/length),
Q = volume source.
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Example – Radiative Transfer

After operator-splitting,

∂(ρe)

∂t
=

∫

4π

dΩσ (ψ −B)

(
1

c

∂

∂t
+ Ω̂ · ∇

)
ψ = −σψ + σB(T )
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Example – Radiative Transfer

After operator-splitting,

∂(ρe)

∂t
=

[
Cv
∂T

∂t
=

(
Cv
∂T

∂B

)
∂B

∂t

]
=

∫

4π

dΩσ (ψ −B)

(
1

c

∂

∂t
+ Ω̂ · ∇

)
ψ = −σψ + σB(T )

Linearized semi-implicit substitution gives

[
Ω̂ · ∇+

(
σ +

1

c∆t

)]
ψ =


 1

1 + Cv
4πσ∆t ∂B

∂T


 σ

4π

∫
dΩ′ψ + q.
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Asymptotic Diffusion Limit

Scattering dominates, and the transport equation

εΩ̂ · ∇ψ + σψ =
σ − ε2σa

4π

∫
dΩ′ψ + ε2

Q

4π
,

as ε→ 0, limits to the diffusion equation

−∇ · 1

3σ
∇ψ(0) + σaψ

(0) = Q

or using Fick’s Law,

∇ · F(1) + σaψ
(0) = Q

where

F(1) = −D∇ψ(0) =

∫

4π

Ω̂ψ(1) dΩ′

D = 1/3σ
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Diffusion Limit and Linear Solutions

Ω̂ · ∇ψ + σψ =
σs
4π

∫
ψ dΩ̂′ +

Q

4π
,

−∇ · 1

3σ
∇φ+ σaφ = Q.

Transport→ Diffusion in diffusion limit, ψ(1) is
linear-in-angle.

Transport and Diffusion equations share certain
low-order polynomial solutions, such as the linear
solution (ψ = x− µ/σ, φ = x).

These are not necessarily related. We show in the
diffusion limit that they are crucially linked.
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Importance of Diffusion Limit

In diffusive regions, the radiation density varies an
O(1) amount in a diffusion length, 1√

σσa
, so the mesh

spacing should only have to resolve that scale.

In transport dominated regions, the radiation density
can vary an O(1) amount over a mean free path,
λ = 1

σ
, but in a diffusive region this becomes ε

σ
.

If a differencing scheme is designed to be accurate
only in the transport regime, excessively fine meshes
will be required to obtain accurate solutions in diffusive
regions.

If a differencing scheme scales asymptotically to a
discretized version of the diffusion equation, then we
can use thick cells accurately in diffusive regions.
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History

1987 Larsen, Morel, and Miller→ Discrete Asymptotic Analysis

Date CB/DFEM Multiple Balance

1991 Adams,WLA BLD Morel/Larsen MB2

Adams CB

1997 Adams UCB

1998 Adams/Nowak MG-UCB

1999 Thompson Tet-UCB

2001 Waering et al. Tri/Tet DFEM

Adams DFEM

2004 Davidson Wachspress

Today H. Stone & Adams PWLD Hanshaw & Larsen MMB

2003 Larsen→ Polynomial Solutions Paper
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Skewed Kershaw Grids
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Diffusive Hump Problem
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Effective Diffusion Tensor Analysis

Define

ψx = (x− µ/σ)/4π

Then

Fexact(ψx) = −x̂/3σ = −Dx̂

Compute approximate ψx and ψy solutions to linear
problems, then calculate

Deff = −
[
Fx(ψx) Fx(ψy)

Fy(ψx) Fy(ψy)

]

Computational alternative to Larsen’s D(h) analysis.
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UCB Results for ξ = 0.1
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Adams “Hard” Problem

Grid UCB MMB
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Interpretation

Stand-Alone Diffusion Discretization
Does not have to preserve linear solutions, which
may be desirable (because of loss of symmetry).
E.g. Morel & Shashkov’s local support operators
methods.

Transport Diffusion-Limit Diffusion Discretization
Failure to preserve linear-solutions yields gross
changes in flux.
This stems from the angular dependence of the
linear solution.
Deff analysis reveals this is the dominant cause of
the diffusive solution degradation.

Ideally, a transport solution will always preserves the
linear solution; in the diffusion limit, this is a must!
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