

Computing Bifurcation & Stability Properties of Crystals

Ryan S. Elliott[†]

John A. Shaw* & Nicolas Triantafyllidis*

[†]Department of Aerospace Engineering & Mechanics The University of Minnesota

> * Department of Aerospace Engineering The University of Michigan

> > Funded by: DOE CSGF AFOSR

June 21, 2005

Outline

- Introduction & motivation
 - Active materials & Martensitic transformations (MT's)
 - Shape Memory Alloys (SMA's)
- Atomistic modeling of MT's
 - Temperature-dependent atomic potentials
 - Bifurcation & stability investigation of stress-free phases
 - Hysteretic proper MT between cubic B2 and orthorhombic B19 phases
- Computational challenges
 - Crystal stability
 - Equilibrium path following
 - Behavior near bifurcation points
- Summary & conclusions

Engineering

M University of

Active Materials

• Multi-physics coupling — Crystal structure changes

Magnetostrictive Materials	Magnetic Field	\leftrightarrow	Mechanical
Ferroelectric Materials	Electric Field	\leftrightarrow	Mechanical
Shape Memory Alloys	Temperature	\leftrightarrow	Mechanical

Martensitic Transformations Materials on the cusp of an instability

Martensite

Austenite

Engineering

AAAA UNIVERSITY OF MINNESOTA

Aerospace

Shape Memory Alloys (SMAs)

Tensile behavior of NiTi

(exhibiting the shape memory effect and pseudo-elasticity)

(J. Shaw 1997)

X. X. X.

Engineering

Mechanics

MINNESTY OF MINNES

Aerospace

Materials Research Science and Engineering Center at the University of Wisconsin - Madison www.mrsec.wisc.edu/nano

The Crystal Structures of SMAs

MINNESOTA • Prevalent austenite and martensite crystals in shape memory alloys

Objective: Develop an atomic model to capture proper martensitic transformations such as those found in shape memory alloys

Engineering

Pair-Potential Model

Engineering

A University of Minnesota

 $\mathbf{G}_{i} - \text{ref. lattice basis}$ $\mathbf{X}[\ell] - \text{unit-cell ref. pos.}$ $\mathbf{X} \begin{bmatrix} \ell \\ \alpha \end{bmatrix} - \text{reference pos.}$ $\mathbf{P}[\alpha] - \text{fractional pos.}$ $\alpha = 0, 1, 2, 3$

Engineering

AAAA UNIVERSITY OF MINNESOTA

Mechanics

Aerospace

 \mathbf{G}_2 G \mathbf{G}_i – ref. lattice basis $\mathbf{X}[\ell]$ – unit-cell ref. pos. $\mathbf{X} \begin{bmatrix} \ell \\ \alpha \end{bmatrix}$ – reference pos. $\mathbf{P}[\alpha]$ – fractional pos. $\alpha = 0, 1, 2, 3$

Engineering

AAAAAA UNIVERSITY OF MINNESOTA

Mechanics

Aerospace

** ** ** ** ** ** ** ** ** **

 $\mathbf{S}[1]$ \mathbf{G}_2 G

 \mathbf{G}_i – ref. lattice basis $\mathbf{X}[\ell]$ – unit-cell ref. pos. $\mathbf{X}\begin{bmatrix}\ell\\\alpha\end{bmatrix}$ – reference pos. $\mathbf{P}[\alpha]$ – fractional pos. $\alpha = 0, 1, 2, 3$

Engineering

AAAA UNIVERSITY OF MINNESOTA A

Mechanics

Aerospace

 $\mathbf{S}[\alpha]$ – sub-lat. ref. shifts

 \mathbf{G}_i – ref. lattice basis $\mathbf{X}[\ell]$ – unit-cell ref. pos. $\mathbf{X}\begin{bmatrix} \ell \\ \alpha \end{bmatrix}$ – reference pos. $\mathbf{P}[\alpha]$ – fractional pos. $\alpha = 0, 1, 2, 3$

Engineering

AAA UNIVERSITY OF MINNESOTA

Mechanics

Aerospace

 $\mathbf{S}[\alpha]$ – sub-lat. ref. shifts

 $\mathbf{S}[1]$ \mathbf{G}_2 0 G

DOE-CSGF-2005 - p. 7

 \mathbf{g}_i – current lattice basis $\mathbf{x}[\ell]$ – unit-cell current pos. $\mathbf{x} \begin{bmatrix} \ell \\ \alpha \end{bmatrix}$ – current pos.

L~&^&^&^&^&**^**&^&**`**&^&**`**&^&**`**&^&**`**&^&**`**&^&**`**&^&**`**&^&**`**&^&**`**&^&**`**&^&**`**&^&**`**&^&**`**&^&**`**&`

 \mathbf{g}_1

 \mathbf{g}_2

 $\mathbf{x}[_1^\ell]$

 $\mathbf{x}[\ell]$

Multilattice Model & Stress-free Equilibrium

 $\mathbf{X}\begin{bmatrix} \ell \\ \alpha \end{bmatrix}$ — reference position vector of atom α in unit cell ℓ

- $\begin{aligned} \mathbf{S}[\alpha] & \text{displacement vector of atom } \alpha \text{ (sub-lattice)} \\ & \alpha = 0, 1, 2, 3 \end{aligned}$
- $\mathbf{S}[3]$ $\mathbf{S}[2]$ $\mathbf{S}[0]$ $\mathbf{S}[1]$ $\mathbf{S}[0] = \mathbf{0}$

MA UNIVERSITY OF

• Current position vector (Cauchy-Born kinematics, $\alpha = 0, 1, 2, 3$)

$$\mathbf{x}\begin{bmatrix}\ell\\\alpha\end{bmatrix} = \mathbf{F} \cdot \left(\mathbf{X}\begin{bmatrix}\ell\\lpha\end{bmatrix} + \mathbf{S}[lpha]\right)$$

• Energy density

$$\widetilde{W}(\mathbf{u};\theta) = \frac{1}{2V} \sum_{\alpha'} \sum_{\substack{[\ell]\\\alpha'}} \phi_{\alpha\alpha'} \left(r \begin{bmatrix} \ell & 0\\ \alpha & \alpha' \end{bmatrix}; \theta \right)$$

 $\mathbf{u} \equiv \{\mathbf{F}, \mathbf{S}[1], \mathbf{S}[2], \mathbf{S}[3]\}, \qquad r \begin{bmatrix} \ell & \ell' \\ \alpha & \alpha' \end{bmatrix} = \left\| \mathbf{x} \begin{bmatrix} \ell \\ \alpha \end{bmatrix} - \mathbf{x} \begin{bmatrix} \ell' \\ \alpha' \end{bmatrix} \right\|$

Multilattice Model & Stress-free Equilibrium

.

$$\frac{\partial \widetilde{W}}{\partial \mathbf{u}} = \mathbf{0} \begin{cases} \frac{\partial W}{\partial \mathbf{U}} = \mathbf{0}, \\ \frac{\partial \widetilde{W}}{\partial \mathbf{S}[1]} = \mathbf{0}, & \frac{\partial \widetilde{W}}{\partial \mathbf{S}[2]} = \mathbf{0}, & \frac{\partial \widetilde{W}}{\partial \mathbf{S}[3]} = \mathbf{0}. \end{cases}$$

S[α] S[α] S[α] S[] S

Engineering

Aerospace

• Stability

- Cauchy-Born stability (local energy minimizer):

$$\delta \mathbf{u} \frac{\partial^2 \widetilde{W}}{\partial \mathbf{u} \partial \mathbf{u}} \delta \mathbf{u} > 0; \qquad \delta \mathbf{u} = \{ \delta \mathbf{U}, \delta \mathbf{S}[1], \delta \mathbf{S}[2], \delta \mathbf{S}[3] \}, \ \delta \mathbf{U} = \delta \mathbf{U}^T.$$

– Phonon stability:

$$\left(\omega^{(q)}(\mathbf{k})\right)^2 > 0, \quad \forall \mathbf{k}, q.$$

June 21, 2005

4-Lattice Bifurcation Diagram

• Hysteretic proper Martensitic transformation between B2 & B19

Engineering

Transformation Parameters

$B2 \Longrightarrow B19$

Martensitic Transformation

• Experimental right stretch tensor

B19

 $\mathbf{U} = \begin{bmatrix} 1.024 & 0.0106 & 0\\ 0.0106 & 1.024 & 0\\ 0 & 0 & 0.9491 \end{bmatrix}$ AuCd, (*Chang, Read (1951)*)

 $\mathbf{U} = \begin{bmatrix} 1.042 & 0.0194 & 0\\ 0.0194 & 1.042 & 0\\ 0 & 0 & 0.9178 \end{bmatrix}$ CuAlNi, (*Otsuka, Shimizu (1974)*)

*B*19′

 $\mathbf{U} = \begin{bmatrix} 1.025 & 0.0620 & 0.0490 \\ 0.0620 & 1.025 & 0.0490 \\ 0.0490 & 0.0490 & 0.9587 \end{bmatrix}$ NiTi, (*Otsuka et al. (1971)*)

• Simulated right stretch tensor ($\theta = 1.0$)

Computational Challenges

- Robust stability criterion phonon spectra
- Efficient numerical evaluation of phonon spectra
- Efficient equilibrium path following
 - Reduced set of equations based on symmetry
 - Pseudo-arc-length method
- Determine behavior near bifurcation points
 - Identify all paths that emerge from a bifurcation point
 - Numerical implementation of asymptotic analysis
 - Projection operators

Engineering

A University of

Direct Computation of Stability

• Compute all eigenvalues of

$$K = \frac{\partial^2 \widetilde{W}}{\partial \mathbf{u} \left[\begin{smallmatrix}\ell\\\alpha\end{smallmatrix}\right] \partial \mathbf{u} \left[\begin{smallmatrix}\ell\\\alpha\end{smallmatrix}\right]},$$

$$(3MN \times 3MN)$$

M—number of atoms per unit cell

N—number of unit cells in crystal

– Methods: SVD, LDU, Cholseky, Jacobi, Householder, etc.

– Time complexity: $O([3MN]^3)$. Too slow for large N

Reduction to Block Diagonal Form

• In $3M \times 3M$ block form

$$K = \begin{bmatrix} \ddots \\ \begin{pmatrix} K \begin{bmatrix} n-1 & n-1 \\ \alpha & \beta \end{bmatrix} \end{pmatrix} \begin{pmatrix} K \begin{bmatrix} n-1 & n \\ \alpha & \beta \end{bmatrix} \end{pmatrix} \begin{pmatrix} K \begin{bmatrix} n-1 & n \\ \alpha & \beta \end{bmatrix} \end{pmatrix} \begin{pmatrix} K \begin{bmatrix} n-1 & n+1 \\ \alpha & \beta \end{bmatrix} \end{pmatrix} \begin{pmatrix} K \begin{bmatrix} n & n-1 \\ \alpha & \beta \end{bmatrix} \end{pmatrix} \begin{pmatrix} K \begin{bmatrix} n & n-1 \\ \alpha & \beta \end{bmatrix} \end{pmatrix} \begin{pmatrix} K \begin{bmatrix} n & n+1 \\ \alpha & \beta \end{bmatrix} \end{pmatrix} \begin{pmatrix} K \begin{bmatrix} n+1 & n-1 \\ \alpha & \beta \end{bmatrix} \end{pmatrix} \begin{pmatrix} K \begin{bmatrix} n+1 & n-1 \\ \alpha & \beta \end{bmatrix} \end{pmatrix} K = \begin{bmatrix} n+1 & n-1 \\ \alpha & \beta \end{bmatrix}$$

Engineering

Reduction to Block Diagonal Form

• In $3M \times 3M$ block form

Translational periodicity (block-circulant matrix)

Reduction to Block Diagonal Form

• In $3M \times 3M$ block form

• $3M \times 3M$ block diagonal form \implies Time complexity: $O([3M]^3 N)$.

Engineering

AAA UNIVERSITY OF MINNESOTA

Mechanics

Computational Challenges

- Robust stability criterion phonon spectra
- Efficient numerical evaluation of phonon spectra
- Efficient equilibrium path following
 - Reduced set of equations based on symmetry
 - Pseudo-arc-length method
- Determine behavior near bifurcation points
 - Identify all paths that emerge from a bifurcation point
 - Numerical implementation of asymptotic analysis
 - Projection operators

Engineering

A University of

Following Equilibrium Paths

Solve a *reduced* set of equilibrium equations, e.g.,

• Cubic Phase

Solve: $\frac{\partial W}{\partial a} = 0.$ $U_{11} = U_{22} = U_{33} = a$ $U_{12} = U_{23} = U_{31} = 0.$ Tetragonal Phase $U_{33} = c, \quad U_{11} = U_{22} = a,$ Solve: $\frac{\partial W}{\partial a} = 0, \ \frac{\partial W}{\partial c} = 0.$ $U_{12} = U_{23} = U_{31} = 0.$ • Orthorhombic Phase Solve: $\left| \frac{\partial \widetilde{W}}{\partial a} = 0, \ \frac{\partial \widetilde{W}}{\partial b} = 0, \ \frac{\partial \widetilde{W}}{\partial c} = 0. \right|$ \mathcal{C} $U_{11} = a, \quad U_{22} = b, \quad U_{33} = c,$ $U_{12} = U_{23} = U_{31} = 0.$

Advantages:

- Reduce computational effort
- Eliminate singularities near bifurcation points

Following Equilibrium Paths

Problem: following an equilibrium path around a turning point

- Pseudo-arc-length method (Riks method)
 - known solution $\mathbf{u}(\theta_k)$
 - find solution $\mathbf{u}(\theta_{k+1})$ a "distance" Δ away

UNIVERSITY OF

- Augment equilibrium equations with "distance" constraint

$$\frac{\partial \widetilde{W}(\mathbf{u}(\theta_{k+1});\theta_{k+1})}{\partial \mathbf{u}} = \mathbf{0}, \qquad \|\mathbf{u}(\theta_{k+1}) - \mathbf{u}(\theta_k)\|^2 + (\theta_{k+1} - \theta_k)^2 = \Delta^2$$

- solve for θ_{k+1} and $\mathbf{u}(\theta_{k+1})$ simultaneously

• Also adaptively change Δ near turning points

Computational Challenges

DOE-CSGF-2005-p. 18

- Crystal structure stability
 - Robust stability criterion phonon spectra
 - Efficient numerical evaluation of phonon spectra
- Efficient equilibrium path following
 - Reduced set of equations based on symmetry
 - Pseudo-arc-length method
- Determine behavior near bifurcation points
 - Identify all paths that emerge from a bifurcation point
 - Numerical implementation of asymptotic analysis
 - Projection operators

Asymptotic Bifurcation Analysis

• At a multiple bifurcation point, (\mathbf{u}_c, θ_c) :

 $\frac{\partial^2 \widetilde{W}}{\partial \mathbf{u}^2} \bigg|_c$ is singular with a null space of dimension $H \ge 2$.

• Following Triantafyllidis & Peek (1992),

(bifurcation amplitude parameter ξ)

Engineering

🛤 University of Minne

$$\begin{split} \theta(\xi) &= \theta_c + \theta_1 \xi + \theta_2 \frac{\xi^2}{2} + O(\xi^3) \,, \\ \mathbf{u}(\xi) &= \overset{0}{\mathbf{u}}(\theta(\xi)) + \left(\sum_{I=1}^{H} \alpha_I \overset{I}{\mathbf{u}}\right) \xi + \left(\sum_{I,J=1}^{H} \alpha_I \alpha_J \overset{IJ}{\mathbf{v}}\right) \frac{\xi^2}{2} + O(\xi^3) \,, \\ \text{where } \left\{ \overset{1}{\mathbf{u}}, \dots, \overset{H}{\mathbf{u}} \right\} \text{ is an O.N. basis for the null space of } \frac{\partial^2 \widetilde{W}}{\partial \mathbf{u}^2} \Big|_c \,. \end{split}$$

5 5

Numerical Asymptotic Bifurcation Analysis

Substitute into equilibrium equations $\frac{\partial \widetilde{W}}{\partial \mathbf{u}} = \mathbf{0}$, expand, and collect L.O.T.

Symmetric bifurcation

AAA University of Minne

• For symmetric bifurcation: $\left(\frac{\partial^3 \widetilde{W}}{\partial \mathbf{u}^3} \bigg|_c \stackrel{IJK}{\mathbf{uuu}} \right) \equiv 0$

$$\sum_{J,K,L=1}^{H} \alpha_J \alpha_K \alpha_L \mathcal{E}_{IJKL} + 3\theta_2 \sum_{J=1}^{H} \alpha_J \mathcal{E}_{IJ\theta} = 0,$$

$$\sum_{I=1}^{n} (\alpha_I)^2 = 1.$$

$$\mathcal{E}_{IJ\theta} \equiv \left. \left(\frac{d}{d\theta} \left(\frac{\partial^2 \widetilde{W}(\overset{0}{\mathbf{u}}(\theta); \theta)}{\partial \mathbf{u} \partial \mathbf{u}} \right) \right) \right|_c \overset{IJ}{\mathbf{u} \mathbf{u}},$$

$$\mathbf{u}_{JKL} \equiv \left. \frac{\partial^4 \widetilde{W}}{\partial \mathbf{u}^4} \right|_c \left. \begin{array}{c} {}_{JKLI}^{JKLI} \\ \mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u} \\ \end{array} \right|_c \left(\begin{array}{c} {}_{c}^{JKL} \\ \mathbf{v}\mathbf{u} \\ \end{array} \right)_c \left(\begin{array}{c} {}_{c}^{JK} \\ \mathbf{u}\mathbf{u} \\ \end{array} \right)_c \left(\begin{array}{c} {}_{c}^{JK} \\ \mathbf{v}\mathbf{u} \\ \end{array} \right)_c \left(\begin{array}{c$$

$$\left| \frac{\partial^2 \widetilde{W}}{\partial \mathbf{u}^2} \right|_c \mathbf{v}^I = - \left. \frac{\partial^3 \widetilde{W}}{\partial \mathbf{u}^3} \right|_c \mathbf{u}^I \mathbf{u}^J$$

• Fredholm alternative guarantees a unique $\frac{IJ}{v}$

 \mathcal{E}_{1}

Numerical Asymptotic Bifurcation Analysis

Need
$$\stackrel{IJ}{\mathbf{v}}$$
: $\frac{\partial^2 \widetilde{W}}{\partial \mathbf{u}^2} \begin{vmatrix} IJ \\ \mathbf{v} \end{vmatrix} = - \frac{\partial^3 \widetilde{W}}{\partial \mathbf{u}^3} \begin{vmatrix} IJ \\ \mathbf{u} \end{vmatrix}_c$

• Generate an O.N. basis for \mathbb{R}^n by diagonalizing $\frac{\partial^2 \widetilde{W}}{\partial \mathbf{u}^2} \in \mathbb{R}^n \times \mathbb{R}^n$

$$\mathcal{N} = \operatorname{Span}\left\{ {{1 \atop {\mathbf{u}}}, \ldots , {{ \atop {\mathbf{u}}}}^H} \right\}, \qquad \mathcal{N}^\perp = \operatorname{Span}\left\{ {{1 \atop {\mathbf{v}}}, \ldots , {{ \atop {\mathbf{v}}}^{n-H}}^H} \right\}$$

• Projection operator $[Q_{Ij}] = [\stackrel{I}{v_j}] : \mathbb{R}^n \mapsto \mathcal{N}^{\perp}$

$$Q \frac{\partial^2 \widetilde{W}}{\partial \mathbf{u}^2} \bigg|_c Q^T Q^{IJ} \mathbf{v} = -Q \frac{\partial^3 \widetilde{W}}{\partial \mathbf{u}^3} \bigg|_c \overset{IJ}{\mathbf{u} \mathbf{u}}$$

non-singular

• Solving gives

$$\mathbf{v} = -Q^{T} \underbrace{\left[Q \left. \frac{\partial^{2} \widetilde{W}}{\partial \mathbf{u}^{2}} \right|_{c} Q^{T} \right]^{-1} Q \left. \frac{\partial^{3} \widetilde{W}}{\partial \mathbf{u}^{3}} \right|_{c} \underbrace{I J}_{uu.}}_{n \times (n-H)} \underbrace{\underbrace{(n-H) \times (n-H)}_{n \times 1}}_{n \times 1}$$

June 21, 2005

Engineering

🗚 University of Mi

Numerical Asymptotic Bifurcation Analysis

- $\mathcal{E}_{IJ\theta}$, $\overset{IJ}{\mathbf{v}}$, and \mathcal{E}_{IJKL} are obtained numerically
- *All* bifurcating equilibrium paths are found by solving

$$\sum_{I,K,L=1}^{H} \alpha_J \alpha_K \alpha_L \mathcal{E}_{IJKL} + 3\theta_2 \sum_{J=1}^{H} \alpha_J \mathcal{E}_{IJ\theta} = 0, \qquad \sum_{I=1}^{H} (\alpha_I)^2 = 1.$$

- In general there are $(3^H 1)/2$ pairs of solutions (α_I, θ_2) and $(-\alpha_I, \theta_2)$
- Each *pair* of solutions corresponds to *one symmetric* equilibrium path

Symmetric bifurcation

M University of

Example of Degree Two Bifurcation

• Bifurcation of degree two (H = 2) at \mathcal{B}

Engineering

A UNIVERSITY OF MINNESOT

Mechanics

Aerospace

- Resulting bifurcation equations $(\theta_1 = 0)$ $-4849.2(\alpha_1)^3 - 19421(\alpha_1(\alpha_2)^2) + 3\theta_2(0.02425\alpha_1) = 0,$ $-19421((\alpha_1)^2\alpha_2) - 4849.2(\alpha_2)^3 + 3\theta_2(0.02425\alpha_2) = 0.$
- Solutions (four pairs)

B19(1):	$\alpha_1 = 1, \ \alpha_2 = 0,$	$\theta_2 = 66654,$
B19(2):	$\alpha_1 = 0, \ \alpha_2 = 1,$	$\theta_2 = 66654,$
$\operatorname{Cmmm}(1)$:	$\alpha_1 = 1, \ \alpha_2 = 1,$	$\theta_2 = 333607,$
Cmmm(2) :	$\alpha_1 = 1, \ \alpha_2 = -1,$	$\theta_2 = 333607.$

June 21, 2005

• Compare numerical and asymptotic results

Summary & Conclusions

Numerical techniques for bifurcation investigation of atomistic material models

- Phonon spectra important measure of crystal stability
 - Block-Fourier transform allows efficient phonon spectra computation
 - Time complexity $O((3M)^3N)$: linear in number of unit cells
- Efficient methods for following equilibrium paths
 - Reduce the number of equations by invoking symmetry
 - Pseudo-arc-length method
- Analyze behavior near bifurcation points
 - Numerically assisted asymptotic bifurcation investigation

June 21, 2005

DOE-CSGF-2005 – p. 25

Summary & Conclusions

- Used these computational techniques to study a new atomistic model
 - Temperature-dependent atomic-potentials
 - Cauchy-Born kinematics uniform deformation & internal shifts

- Identified a hysteretic proper Martensitic transformation
 - Cubic austenite phase (B2 CsCl-type crystal)
 - Orthorhombic martensite phase (*B*19 crystal structure)
 - These structures are experimentally observed in SMA's such as AuCd, CuAlNi, and NiTiCu.

Engineering

LUNIVERSITY OF MINNES