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Outline

• Introduction & motivation
– Active materials & Martensitic transformations (MT’s)

– Shape Memory Alloys (SMA’s)

• Atomistic modeling of MT’s
– Temperature-dependent atomic potentials

– Bifurcation & stability investigation of stress-free phases

– Hysteretic proper MT between cubicB2 and orthorhombicB19 phases

• Computational challenges
– Crystal stability

– Equilibrium path following

– Behavior near bifurcation points

• Summary & conclusions
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Active Materials

• Multi-physics coupling — Crystal structure changes

Magnetostrictive Materials Magnetic Field↔ Mechanical
Ferroelectric Materials Electric Field ↔ Mechanical
Shape Memory Alloys Temperature ↔ Mechanical

Martensitic Transformations
Materials on the cusp of an instability

AusteniteMartensite

θ
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Shape Memory Alloys (SMAs)

Tensile behavior of NiTi

(J. Shaw 1997)

(exhibiting the shape memory effect and pseudo−elasticity)
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The Crystal Structures of SMAs

• Prevalent austenite and martensite crystals in shape memory alloys

Austenite

B2

Cubic

Martensite

L10

Tetragonal

B19

Orthorhombic

B19′

Monoclinic

Objective: Develop an atomic model to captureproper martensitic transforma-
tions such as those found in shape memory alloys
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Pair-Potential Model

φ(r; θ) = A

{

exp

[

−2B

(
r

r̂(θ)
− 1

)]

− 2 exp

[

−B

(
r

r̂(θ)
− 1

)]}

r̂(θ) = r0 + rθ (θ − 1)

r0 rθ β A mass

aa 1 0 4 1 1

bb 1.060 0.010 7 1 0.816

ab 1.026 0.005 5.5 1 N/A

a

b

r

φ(r; θ)

1 2

−1

0
φaa

φab

φbb

θ = 1

r

φ(r; θ)

1 2

−1

0
φaa

φab

φbb

θ = 10

June 21, 2005 DOE-CSGF-2005 – p. 6



University of Minnesota

AEM
Aerospace

Engineering

Mechanics

&

Multilattice (Cauchy-Born Kinematics)

P[0]

P[1]

P[2]P[3]

G1

G2

0

X[`] X[`1]

Gi – ref. lattice basis

X[`] – unit-cell ref. pos.

X
ˆ
`
α

˜
– reference pos.

P[α] – fractional pos.

α = 0, 1, 2, 3
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Multilattice (Cauchy-Born Kinematics)

G1

G2

0

Gi – ref. lattice basis

X[`] – unit-cell ref. pos.

X
ˆ
`
α

˜
– reference pos.

P[α] – fractional pos.

α = 0, 1, 2, 3

June 21, 2005 DOE-CSGF-2005 – p. 7



University of Minnesota

AEM
Aerospace

Engineering

Mechanics

&

Multilattice (Cauchy-Born Kinematics)

S[1]

G1

G2

0

Gi – ref. lattice basis

X[`] – unit-cell ref. pos.

X
ˆ
`
α

˜
– reference pos.

P[α] – fractional pos.

α = 0, 1, 2, 3

S[α] – sub-lat. ref. shifts
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Multilattice (Cauchy-Born Kinematics)

S[1]

G1

G2

0

Gi – ref. lattice basis

X[`] – unit-cell ref. pos.

X
ˆ
`
α

˜
– reference pos.

P[α] – fractional pos.

α = 0, 1, 2, 3

S[α] – sub-lat. ref. shifts
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Multilattice (Cauchy-Born Kinematics)

x
[
`
α

]
= F•

(
X
[
`
α

]
+ S[α]

)

g1

g2

0

x[`]
x[`1]

Gi – ref. lattice basis

X[`] – unit-cell ref. pos.

X
ˆ
`
α

˜
– reference pos.

P[α] – fractional pos.

α = 0, 1, 2, 3

S[α] – sub-lat. ref. shifts

F – uniform deformation

gi – current lattice basis

x[`] – unit-cell current pos.

x
ˆ
`
α

˜
– current pos.
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Multilattice Model & Stress-free Equilibrium

X
[
`
α

]
— reference position vector of atomα in unit cell `

S[α] — displacement vector of atomα (sub-lattice)
α = 0, 1, 2, 3

S[1]

S[2]S[3]

S[0]
S[0] = 0

z

x

y

• Current position vector (Cauchy-Born kinematics,α = 0, 1, 2, 3)

x
[
`
α

]
= F•

(
X
[
`
α

]
+ S[α]

)

• Energy density

∼

W (u; θ) =
1

2V

∑

α′

∑

[`α]

φαα′

(
r
[
`
α

0
α′

]
; θ
)

u ≡ {F,S[1],S[2],S[3]} , r
[

`
α

`′

α′

]

=
∥
∥
∥x
[
`
α

]
− x

[
`′

α′

]∥
∥
∥
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Multilattice Model & Stress-free Equilibrium

S[1]

S[2]S[3]

S[0]
S[0] = 0

z

x

y

• Equilibrium: 15 DOFs — 6 fromU = UT and 9 fromS[α]

∂
∼

W

∂u
= 0







∂
∼

W

∂U
= 0,

∂
∼

W

∂S[1]
= 0,

∂
∼

W

∂S[2]
= 0,

∂
∼

W

∂S[3]
= 0.

• Stability
– Cauchy-Born stability (local energy minimizer):

δu
∂2

∼

W

∂u∂u
δu > 0; δu = {δU, δS[1], δS[2], δS[3]} , δU = δUT .

– Phonon stability:
(

ω(q)(k)
)2

> 0, ∀k, q.
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4-Lattice Bifurcation Diagram

θ

Uzz

0.9

1

1.1

1.2

1 2 3 4 5
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L10
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Deformation

θ

Uzz

0.99

1

1.01
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A

D

BB2

L10
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B19

Deformation

1

2

3

B2 B19

L10 Cmmm

B19′

• Hysteretic proper Martensitic transformation betweenB2 & B19
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Transformation Parameters

B2 =⇒ B19
Martensitic Transformation

• Experimental right stretch tensor • Simulated right stretch tensor (θ = 1.0)

B19

U =





1.024 0.0106 0
0.0106 1.024 0

0 0 0.9491





AuCd, (Chang, Read (1951))

U =





1.042 0.0194 0
0.0194 1.042 0

0 0 0.9178





CuAlNi, (Otsuka, Shimizu (1974))

B19′

U =





1.025 0.0620 0.0490
0.0620 1.025 0.0490
0.0490 0.0490 0.9587





NiTi, (Otsuka et al. (1971))

B19

U =





1.045 0.0173 0
0.0173 1.045 0

0 0 0.9224




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Computational Challenges

• Crystal structure stability
– Robust stability criterion — phonon spectra

– Efficient numerical evaluation of phonon spectra

• Efficient equilibrium path following
– Reduced set of equations based on symmetry

– Pseudo-arc-length method

• Determine behavior near bifurcation points
– Identify all paths that emerge from a bifurcation point

– Numerical implementation of asymptotic analysis

- Projection operators

June 21, 2005 DOE-CSGF-2005 – p. 12



University of Minnesota

AEM
Aerospace

Engineering

Mechanics

&

Direct Computation of Stability

• Compute all eigenvalues of K =
∂2

∼

W

∂u [`α]∂u [`α]
, (3MN × 3MN)

M—number of atoms per unit cell

N—number of unit cells in crystal









∗ ∗ ∗ · · ·

∗ ∗ ∗ · · ·

∗ ∗ ∗ · · ·
...

...
...

...

















λ1

λ2

λ3

...









– Methods: SVD, LDU, Cholseky, Jacobi, Householder, etc.

– Time complexity:O
(

[3MN ]3
)

. Too slow for largeN
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Reduction to Block Diagonal Form

• In 3M × 3M block form

K =














. ..
(

K
[

n−1
α

n−1
β

]) (

K
[

n−1
α

n
β

]) (

K
[

n−1
α

n+1
β

])

(

K
[

n
α

n−1
β

]) (

K
[

n
α

n
β

]) (

K
[

n
α

n+1
β

])

(

K
[

n+1
α

n−1
β

]) (

K
[

n+1
α

n
β

]) (

K
[

n+1
α

n+1
β

])

...













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Reduction to Block Diagonal Form

• In 3M × 3M block form

K =














...
(

K
[
0
α

0
β

]) (

K
[
0
α

1
β

]) (

K
[
−1
α

1
β

])

(

KT
[
0
α

1
β

]) (

K
[
0
α

0
β

]) (

K
[
0
α

1
β

])

(

KT
[
−1
α

1
β

]) (

KT
[
0
α

1
β

]) (

K
[
0
α

0
β

])

...














Translational periodicity(block-circulant matrix)

June 21, 2005 DOE-CSGF-2005 – p. 14



University of Minnesota

AEM
Aerospace

Engineering

Mechanics

&

Reduction to Block Diagonal Form

• In 3M × 3M block form

K =














...
(

K
[
0
α

0
β

]) (

K
[
0
α

1
β

]) (

K
[
−1
α

1
β

])

(

KT
[
0
α

1
β

]) (

K
[
0
α

0
β

]) (

K
[
0
α

1
β

])

(

KT
[
−1
α

1
β

]) (

KT
[
0
α

1
β

]) (

K
[
0
α

0
β

])

...














Translational periodicity(block-circulant matrix)

block-Fourier transform

K =












...
(
K
[
k−1
α β

])
(0) (0)

(0)
(
K
[
k
αβ

])
(0)

(0) (0)
(
K
[
k+1
α β

])

...












• 3M × 3M block diagonalform =⇒ Time complexity:O
(

[3M ]
3
N
)

.
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Computational Challenges

• Crystal structure stability
– Robust stability criterion — phonon spectra

– Efficient numerical evaluation of phonon spectra

• Efficient equilibrium path following
– Reduced set of equations based on symmetry

– Pseudo-arc-length method

• Determine behavior near bifurcation points
– Identify all paths that emerge from a bifurcation point

– Numerical implementation of asymptotic analysis

- Projection operators

June 21, 2005 DOE-CSGF-2005 – p. 15



University of Minnesota

AEM
Aerospace

Engineering

Mechanics

&

Following Equilibrium Paths

Solve areduced set of equilibrium equations, e.g.,

• Cubic Phase

U11 = U22 = U33 = a,

U12 = U23 = U31 = 0.
Solve:

∂
∼

W

∂a
= 0.

a
a

a

• Tetragonal Phase

U33 = c, U11 = U22 = a,

U12 = U23 = U31 = 0.
Solve:

∂
∼

W

∂a
= 0,

∂
∼

W

∂c
= 0.

a
a

c

• Orthorhombic Phase

U11 = a, U22 = b, U33 = c,

U12 = U23 = U31 = 0.
Solve:

∂
∼

W

∂a
= 0,

∂
∼

W

∂b
= 0,

∂
∼

W

∂c
= 0.

a
b

c

Advantages:

• Reduce computational effort

• Eliminate singularitiesnear bifurcation points
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Following Equilibrium Paths

Problem: following an equilibrium path around a turning point

• Pseudo-arc-length method(Riks method)
– known solutionu(θk)

– find solutionu(θk+1) a “distance”∆ away

∆

k
k + 1

u

θ

– Augment equilibrium equations with “distance” constraint

∂
∼

W
(
u(θk+1); θk+1

)

∂u
= 0, ‖u(θk+1) − u(θk)‖2+(θk+1−θk)2 = ∆2

– solve forθk+1 andu(θk+1) simultaneously

• Also adaptively change∆ near turning points

u

θ

June 21, 2005 DOE-CSGF-2005 – p. 17



University of Minnesota

AEM
Aerospace

Engineering

Mechanics

&

Computational Challenges

• Crystal structure stability
– Robust stability criterion — phonon spectra

– Efficient numerical evaluation of phonon spectra

• Efficient equilibrium path following
– Reduced set of equations based on symmetry

– Pseudo-arc-length method

• Determine behavior near bifurcation points
– Identify all paths that emerge from a bifurcation point

– Numerical implementation of asymptotic analysis

- Projection operators
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Asymptotic Bifurcation Analysis

• At a multiple bifurcation point,(uc, θc):
∂2

∼

W
∂u

2

∣
∣
∣
∣
c

is singular with a null space of dimensionH ≥ 2.

• FollowingTriantafyllidis & Peek (1992), (bifurcation amplitude parameterξ)

θ(ξ) = θc + θ1ξ + θ2
ξ2

2
+ O

(
ξ3
)
,

u(ξ) =
0
u(θ(ξ)) +

(
H∑

I=1

αI
I
u

)

ξ +





H∑

I,J=1

αIαJ
IJ
v




ξ2

2
+ O

(
ξ3
)
,

where
{

1
u, . . . ,

H
u
}

is an O.N. basis for the null space of∂2
∼

W
∂u

2

∣
∣
∣
∣
c

.

I
u

θ

0
u(θ)

Transcritical bifurcation

θ1

αI

I
u

θ

0
u(θ)

Symmetric bifurcation

θ2/2

αI
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Numerical Asymptotic Bifurcation Analysis

Substitute into equilibrium equations∂
∼

W
∂u

= 0, expand, and collect L.O.T.

• For symmetric bifurcation:
(

∂3
∼

W
∂u

3

∣
∣
∣
∣
c

I
u

J
u

K
u

)

≡ 0

I
u

θ

0
u(θ)

Symmetric bifurcation

θ2/2

αI

H∑

J,K,L=1

αJαKαLEIJKL + 3θ2

H∑

J=1

αJEIJθ = 0,
H∑

I=1

(αI)
2 = 1.

EIJθ ≡

0

@
d

dθ

0

@
∂2

∼

W (
0
u(θ); θ)

∂u∂u

1

A

1

A

˛
˛
˛
˛
˛
˛
c

I
u

J
u,

EIJKL ≡
∂4

∼

W

∂u4

˛
˛
˛
˛
˛
˛
c

J
u

K
u

L
u

I
u +

∂3
∼

W

∂u3

˛
˛
˛
˛
˛
˛
c

„
JK
v

L
u +

KL
v

J
u +

LJ
v

K
u

«
I
u,

∂2
∼

W

∂u2

˛
˛
˛
˛
˛
˛
c

IJ
v = −

∂3
∼

W

∂u3

˛
˛
˛
˛
˛
˛
c

I
u

J
u

• Fredholm alternativeguarantees a unique
IJ
v
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Numerical Asymptotic Bifurcation Analysis

Need
IJ
v : ∂2

∼

W
∂u

2

∣
∣
∣
∣
c

IJ
v = − ∂3

∼

W
∂u

3

∣
∣
∣
∣
c

I
u

J
u

• Generate an O.N. basis forR
n by diagonalizing∂2

∼

W
∂u

2

∣
∣
∣
∣
c

∈ R
n × R

n

N = Span


1
u, . . . ,

H
u

ff

, N⊥ = Span


1
v, . . . ,

n−H
v

ff

• Projection operator[QIj ] = [
I
vj ] : R

n 7→ N⊥

Q
∂2

∼

W

∂u2

˛
˛
˛
˛
˛
˛
c

QT

| {z }

non-singular

Q
IJ
v = −Q

∂3
∼

W

∂u3

˛
˛
˛
˛
˛
˛
c

I
u

J
u

• Solving gives
IJ
v = −QT

[

Q ∂2
∼

W
∂u

2

∣
∣
∣
∣
c

QT

]−1

Q ∂3
∼

W
∂u

3

∣
∣
∣
∣
c

I
u

J
u.

︸︷︷︸

n×(n−H)

︸ ︷︷ ︸

(n−H)×(n−H)

︸ ︷︷ ︸

(n−H)×1

︸ ︷︷ ︸

n×1
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Numerical Asymptotic Bifurcation Analysis

• EIJθ,
IJ
v , andEIJKL are obtainednumerically

• All bifurcating equilibrium paths are found by solving

H∑

J,K,L=1

αJαKαLEIJKL + 3θ2

H∑

J=1

αJEIJθ = 0,
H∑

I=1

(αI)
2 = 1.

• In general there are(3H − 1)/2 pairs of solutions(αI , θ2) and(−αI , θ2)

• Eachpair of solutions corresponds toone symmetric equilibrium path

I
u

θ

0
u(θ)

Symmetric bifurcation

θ2/2

αI
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Example of Degree Two Bifurcation

• Bifurcation of degree two(H = 2) atB

θ

Uzz

0.99

1

1.01

0.4 0.6 0.8 1 1.2

A

D

BB2

L10
Cmmm

B19
Cmmm

B19

Deformation

June 21, 2005 DOE-CSGF-2005 – p. 23



University of Minnesota

AEM
Aerospace

Engineering

Mechanics

&

Example of Degree Two Bifurcation

• Bifurcation of degree two(H = 2) atB

θ

Uzz

0.99

1

1.01

0.4 0.6 0.8 1 1.2

A

D

BB2

L10
Cmmm

B19
Cmmm

B19

Deformation

• Basis forN (translation of certain crystal planes)

1
u =

h

0 0 0 0 0 0 0 0.6931 0 0 0.7203 0 0 0.0271 0
i

,

2
u =

h

0 0 0 0 0 0 0.0271 0 0 0.7203 0 0 0.6931 0 0
i

• Resulting bifurcation equations (θ1 = 0)

−4849.2(α1)
3 − 19421

(
α1(α2)

2
)

+ 3θ2(0.02425α1) = 0,

−19421
(
(α1)

2α2

)
− 4849.2(α2)

3 + 3θ2(0.02425α2) = 0.

• Solutions (four pairs)

B19(1) : α1 = 1, α2 = 0, θ2 = 66654,

B19(2) : α1 = 0, α2 = 1, θ2 = 66654,

Cmmm(1) : α1 = 1, α2 = 1, θ2 = 333607,

Cmmm(2) : α1 = 1, α2 = −1, θ2 = 333607.
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Verification of Asymptotic Results

• Compare numerical and asymptotic results

θ

Sx[2] × 10−3

0.97 0.98 0.99 1

−0.25

0

0.25

B B2

asymptotic

B19 Cmmm

June 21, 2005 DOE-CSGF-2005 – p. 24



University of Minnesota

AEM
Aerospace

Engineering

Mechanics

&

Summary & Conclusions

Numerical techniques for bifurcation investigation of atomistic material models

• Phonon spectra — important measure of crystal stability
– Block-Fourier transform allows efficient phonon spectra computation

– Time complexityO
`
(3M)3N

´
: linear in number of unit cells

• Efficient methods for following equilibrium paths
– Reduce the number of equations by invoking symmetry

– Pseudo-arc-length method

• Analyze behavior near bifurcation points
– Numerically assisted asymptotic bifurcation investigation

∆

k
k + 1

u

θ

I
u

θ

0
u(θ)

Symmetric bifurcation

θ2/2

αI
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Summary & Conclusions

• Used these computational techniques to study a new atomistic model
– Temperature-dependent atomic-potentials

– Cauchy-Born kinematics — uniform deformation & internal shifts

θ

Uzz

0.9

1

1.1

1.2

1 2 3 4 5

A

D

B

C

L10

B2

B19 Cmmm

Deformation

1

2

3

B2

B19

• Identified ahysteretic proper Martensitic transformation
– Cubic austenite phase (B2 CsCl-type crystal)

– Orthorhombic martensite phase (B19 crystal structure)

– These structures are experimentally observed in SMA’s such as AuCd, CuAlNi, and NiTiCu.
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