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Features of Model Problems
in Physics & Engineering

• Focus on dominant physics

• Geometry is simple
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Pseudospectral Methods

• Advantages

• Very computationally efficient: 

• Implementation effort similar to FD

• Disadvantages

• Difficult to handle irregular geometries

• Effort needed to handle non-smooth solutions

error ~ O(pN),  p < 1 “Infinite”
Order



Two Basic Ideas

• Choose grid points appropriately based on 
computational domain

• e.g. finite interval           Chebyshev grid

                                      uniform grid

• Use ALL grid points to compute derivatives

Fully dense differentiation matrices 
... for SMALL     !N



Computational Domains & Grids

• Periodic

• Finite, non-periodic

• Infinite

• Semi-infinite 
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From FD to PS

1. Uniform grid         pseudospectral grid

2. Low-order discrete derivative
          pseudospectral differentation matrix

3. Use standard numerical methods
(e.g. Newton iteration, discrete time-stepping)

“Inside every low-order program is a high 
order algorithm waiting to burst free!” 

– J.P. Boyd 



• Write discretized differential equations explicitly 
in terms of differentation matrices

• Examples:

Direct Matrix Method
for Computing Exact Jacobians

D2φ = ρ
∂2φ

∂x2
= ρ

(Dxφ) .∗ (Dxψ) + (Dyφ) .∗ (Dyψ) + ψ.∗ (Lφ) = 0

(∇φ) · (∇ψ) + ψ∇2φ = 0



• Simple differentiation rules to compute exact Jacobian

Direct Matrix Method
for Computing Exact Jacobians

∂

∂u
[f(u).∗ g(u)] = diag [g(u)] ∗

∂f

∂u
+ diag [f(u)] ∗

∂g

∂u

∂

∂u
(A ∗ u) = A

∂

∂u
[A ∗ f(u)] = A ∗ diag [f ′(u)]

∂f(u)

∂u
= diag [f ′(u)]

Less tedious and less error-prone
Jacobian calculation!



• Example

Direct Matrix Method
for Computing Exact Jacobians

D
2 + diag[sin(2u)] ∗ D + 2diag[D ∗ u] ∗ diag[cos(2u)]

F (u) = D
2
∗ u + sin(2u).∗ (D ∗ u)

F (u) = u
′′ + sin(2u)u′

∂F

∂u
=



Making the Most of MATLAB

• Advantages

• Many useful built-in functions 

• Easy visualization

• Disadvantage:  considered slow

• Solution:  mixed-language programming (i.e. MEX-files)

High-efficiency programming 
+ 

High-performance computing



Electrochemical Thin-Films
• Integro-differential equation

• Nonlinear reaction boundary conditions
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Electrochemical Thin-Films



Charging of Metal Colloid Sphere

• Governing equations

• Boundary conditions
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Charging of Metal Colloid Sphere
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Conformal Mapping for 
Nernst-Planck Equations

• Steady, electroneutral Nernst-Planck equations 
are conformally invariant (Bazant 2004)

0 = ∇ · (∇c± ± c±∇φ)
∑

i

zici = 0



High-Performance 
Desktop Scientific Computing

• Spectral methods yield high accuracy at low 
cost

• Exact Jacobians via Direct Matrix Method  

• MATLAB + C/Fortran = powerful tool for 
moderate-sized problems
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THE END



EXTRA SLIDES



Desktop “Super”-Computers

• Fast CPUs (> 3 GHz)

• Large memories (2 – 4 GB)

• Large on-chip caches (1024 K)

Modern serial computers are 
extraordinarily powerful!


