Numerical Approaches and Computational Results for Fluid Dynamics Problems with Immersed Elastic Structures

Boyce Griffith
Courant Institute of Mathematical Sciences
New York University

with

Charles Peskin (Courant Institute)

and

Richard Hornung (Lawrence Livermore National Lab)
Overview

- **A Numerical Approach**
 - The Immersed Boundary Method
 - A Simple Model Problem

- **Some Implementation Issues**
 - SAMRAI and stationary Cartesian grids
 - PETSc and moving curvilinear meshes

- **Very Preliminary Results**
The Immersed Boundary Method

- General framework for modeling flows with immersed elastic structures or complex geometry

- Introduced by Peskin to study fluid dynamics of heart valves (2D model)
 - 2D model extended by Peskin and McQueen to 3D coupled fluid-mechanical heart model

- **Other application areas have included:**
 - wave propagation in inner ear
 - swimming, fish, bacteria, etc.
 - insect flight
 - flow around sails, flags, and parachutes
 - fluids with suspended elastic particles
A Simple Model Problem

- viscous incompressible fluid
- immersed elastic boundary ("2D water balloon")

Structure domain: \(\mathbf{X}(s,t), \mathbf{F}(s,t) \)

Fluid domain:
- \(u(x,t) \)
- \(p(x,t) \)
- \(f(x,t) \)
Typical IB Spatial Discretization

- **Eulerian variables** described on a Cartesian grid
 - fluid velocity: \(u(x,t) \)
 - pressure: \(p(x,t) \)

- **Lagrangian variables** described on moving curvilinear mesh (parameterized by \(s \))
 - structure position: \(X(s,t) \)
 - elastic force: \(F(s,t) = F(X(s,t)) \)

More generally: Lagrangian variables are parameterized by \((q,r,s,\ldots) \)
- structure not restricted to “lower dimensional” objects
- in particular: structure can occupy nonzero volume in the fluid domain
Simple Model Problem *Redux*

- viscous incompressible fluid
- immersed elastic boundary ("2D water balloon")

Structure domain: $X(s,t), F(s,t)$

Fluid domain:
- $u(x,t)$
- $p(x,t)$
- $f(x,t)$
Fluid-to-Structure Interactions

- Fluid velocity
 - governed by incompressible Navier-Stokes equations (i.e. viscous incompressible flow)

- Structure moves at local fluid velocity
 - structure velocity: \(u(X(s,t),t) \)

- How does the fluid “feel” the influence of the structure...?
Spread the Force to the Grid!

- **Main Idea**: boundaries can be represented by the forces which they exert on the fluid
- How do we define the force on the Cartesian grid?

\[
\begin{align*}
X(k) &\rightarrow X(k+1) \\
F(k) &\rightarrow X(k-1)
\end{align*}
\]

Compute force on curvilinear mesh
Spread the Force to the Grid!

- **Main Idea**: boundaries can be represented by the **forces** which they exert on the fluid

- How do we define the force on the Cartesian grid?

\[\mathbf{X}(k+1) \]

Compute force on curvilinear mesh

Spread force to Cartesian grid
Smoothing Out Force Spreading

- Force spreading weights determined by smoothed approximation to the Dirac delta function.
- Use same smoothed delta function for interpolation.
Project Goals

- Structured AMR fluid solver
 - approximate projection method
 - using SAMRAI (LLNL)

- Implicit timestepping
 - equations are very stiff
 - analytic Jacobian is dense and not available – use Newton-Krylov methods
 - using PETSc (ANL)

- Use this with Peskin and McQueen’s 3D heart model!
SAMR employs a dynamic structured “patch hierarchy”

Mesh and data:
- data stored on “logically-rectangular” patches (e.g., arrays)
- any “orthogonal” coordinate system (e.g., Cartesian, cylindrical, etc.)

Basic SAMR ingredients:
- problem formulation for locally-refined meshes
- (serial) numerical routines for individual patches
- inter-patch data transfer operations (copying, coarsening, refining, ...)

Structure of SAMR computational mesh

- Hierarchy of levels of mesh resolution
- Finer levels are nested within coarser
- Cells on each level are clustered to form logically-rectangular patches

Motivation:
- low overhead mesh description
- bookkeeping for computation and communication is simple (boxes)
- simple model of data locality
- amortize communication overhead by computing over a patch
- well-suited to structured solvers, hierarchical methods, local time refinement, etc.
How is the Lagrangian Grid Distributed?

- **Option 1:** Each processor gets roughly equal number of nodes from the Lagrangian mesh

 - **Advantages**
 - Essentially no duplicated computations
 - Ignoring communications, load balancing is nearly automatic

 - **Disadvantages**
 - Complicated mapping from points to fluid grid
 - Huge amounts of unstructured communication
How are Fibers and Points Distributed?

- **Option 2**: All nodes live on the same patch as their corresponding fluid grid cell

Advantages
- Lower communications requirements and overhead

Disadvantages
- Moderate amount of duplicated computational work
- Requires non-uniform load balancing
- Still need to maintain mappings from fluid cells to Lagrangian indices
Sample Explicit Timestep

- Fill ghost data on patch
- Move structure to predicted half-timestep position
Sample Explicit Timestep

- Fill ghost data on patch
- Move structure to predicted half-timestep position
- Spread half-timestep force
- Compute end-timestep flow
- Move structure to end-timestep position
Sample Explicit Timestep

- Fill ghost data on patch
- Move structure to predicted half-timestep position
- Spread half-timestep force
- Compute end-timestep flow
- Move structure to end-timestep position
Acknowledgements

- Charlie Peskin & Rich Hornung
- Dave McQueen (CIMS)
- Steve Smith (LLNL)
- Brian Gunney (LLNL)
- David Keyes (LLNL/Columbia)

- DOE CSGF Program
- The Krell Institute
Auspices Statement

- Portions of this work were performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

- Some slides are from documents UCRL-PRES-144527 and UCRL-CODE-2002-004