JAZZ: A Whole Genome Shotgun Assembler

Jarrod Chapman
Nik Putnam
Isaac Ho
Dan Rokhsar
Q: What is Whole Genome Shotgun Assembly?

A: Solving a one-dimensional jigsaw puzzle with millions of pieces (without the box)
WGS: The Statistical Ensemble

Poisson statistics:
\[d = \frac{N_r L_r}{G} \]
\[\langle \text{reads/contig} \rangle = e^d \]
\[\langle \text{unsequenced bases} \rangle = G e^{-d} \]

Idealizations:
- Random sampling
- Random sequence (without repeats)

[Landers and Waterman 1988, Genomics 2(3):231-9]
Complications of Real Data Sets

- **Inherent**
 - Repeats
 - Paired-end reads
 - Cloning bias
 - Polymorphism

- **Experimental**
 - Sequencing errors
 - Contamination
 - Tracking errors
 - ???
Assembly Goals and Motivations

- Treat sequence overlap and paired end information on an equal footing. Build in flexibility to include BAC localization and other mapping data for mixed projects.
- Allow for polymorphisms. Unlike microbes and flies, fugu, ciona, and other sequencing targets are neither haploid nor inbred – individuals from the wild.
- Efficient assemblies to provide good substrates for annotation. 6X depth should statistically give good coverage (99.7%), contiguity (30 kb), and contig linking.
- Develop parallel implementation from the start. Scale to large projects (Fugu rubripes @ 400 MB, Poplar @ 600 MB, Xenopus tropicalis @ 1.7 GB).
- Integrate assembly visualization and analysis tools for q.c. and validation – visualize multiple scales.
Use

• Overlap
• Layout
• Consensus

paradigm

data in

0. TRIM for vector, quality

reads, overlaps

DB

reads, layout

paralleлизed and distributed over project lifetime

2. GRAPHY: Build layout

multithreaded

reads

overlap

Embarrassingly parallel

3. THREE: Find consensus

consensus

4. GAPCLOSER: Close captured gaps

genome out

data in
Screen read pairs for potential overlaps using a hashing scheme

MALIGN: Rapid screening for overlaps

- Identify all pairs of reads that share ten or more informative words (reverse complement, too)
 - Use a parallel hash scheme for speed/memory.

- Designate over-represented words in quality-trimmed data set as “unhashable.” (AAAAAAA)
 - Their shared occurrence in two reads is not a reliable indicator of a true overlap.

- Align candidate overlapping reads using banded Smith-Waterman algorithm. Reject low %id.

Minimal detectable overlap = $N_M + M - 1$
GRAPHY: graphical layout algorithm

- Given a set of all-vs-all alignments (from MALIGN)
- Estimate the likelihood that each edge is true.
- Construct an initial solution from the highest confidence, unique sequence.
- Improve the solution iteratively with self-consistency requirement.

Layout Problem

Finding the sub-graph of ‘true’ edges

True edges join reads actually derived from overlapping portions of the genome.
False edges arise from repeats.
GRAPHY: Graphical layout algorithm

Key ingredients
- Use of “rectangles” and other local structures in read graph to corroborate overlaps and reads
- Iterative, self-consistent formation of contigs and scaffolds

“sister edge”
“neighborhood” of R

R

“contigs”

Long mismatch
THREE: Reaching consensus

- Identify “backbone” of forward-moving, minimally overlapping reads spanning each contig

- Use central high quality segments of reads as a proto-consensus

- Form “reference” made from concatenating segments closest to center of each backbone read

- Make master-slave alignment of reference segment to its overlapping reads (with quality-weighted voting)

- Mark potential polymorphisms/misassemblies in alignment
Accuracy (Prochlorococcus @8X, 3kb only)

- BLAST finished sequence vs JAZZ assembly
- White lines connect hits to same scaffold
JAZZ scaffolds are a good substrate for annotation

- GeneWise models introduce few or no indels
- Approximate error rate: < 1 indels/10 kb as expected at 6X depth
JAZZ view of assembly

- # of internal pairs
- Mean insert size
- Clones spanning gap
- Estimated gap size
- Contig name, # reads, size, depth, scaffold
- Clone coverage
- Local depth
- Local edge #
- Selected read
Whole-Genome Shotgun Assembly and Analysis of the Genome of *Fugu Rubripes*
Aparicio, Chapman, …, Putnam, …, Rokhsar, Brenner
Science 23 August 2002
Vol.297 No. 5585 1301-1310

http://genome.jgi-psf.org/fugu6/fugu6.home.html
Comparison of assembled and measured BAC sizes in *Fugu*

Several thousand fingerprinted BACs have both ends placed in same (cosmid-O&O’d) scaffold. With small calibration correction, distance between ends on (small-insert-only) assembly equals sum of restriction fragment lengths.
The Draft Genome of *Ciona intestinalis*: Insights into Chordate and Vertebrate Origins

Science 13 December 2002 Vol. 298 No. 5601 2157-2166

http://genome.jgi-psf.org/ciona4/ciona4.home.html

Length of assembled genome vs number of contigs/scaffolds
Half Moon Bay
Ciona intestinalis: 1.5% average allelic polymorphism rate

Polymorphism detection - SNP and VNTR variants

c = consensus
A/B = reads from two different haplotypes
.
 = high-qual match
o = low-qual match

US DOE Joint Genome Institute
Assembly Goals Revisited

- Plasmid-, cosmid-, BAC-end data used to achieve good contiguity
- 1.5% *Ciona intestinalis*, 0.4% *Fugu*
- Successful annotation of fugu, ciona – assembly provides good annotation substrate
- 400MB fugu assembled – gearing up for poplar (600 MB) *Xenopus* (1.7GB)
- JAZZ view allows read, contig, scaffold level visualization
- microbial consortia; larger polymorphic genomes; general availability

Paired ends
Polymorphism
Efficiency
Scalability
Visualization

To come...
Acknowledgements

- DOE Joint Genome Institute (JGI)
- JGI Assembly Team
 — Nik Putnam, Isaac Ho, Dan Rokhsar
- Susan Lucas, Paul Richardson, Chris Detter
- Fugu and Ciona Genome Consortia
- DOE CSGF / Krell Institute

JGI: http://www.jgi.doe.gov