Lithium-air batteries are an active area of research because of their potential to have a much higher energy density than traditional lithium-ion batteries. However, they are not yet commercially viable due to poor efficiency, high charging voltages and low cycle lifetimes. Many of these issues could be addressed with a deeper fundamental understanding of the atomistic behavior of these batteries. One tool to model such atomic scale behavior is ab initio molecular dynamics (AIMD) simulations. However, AIMD simulations are limited to timescales of tens of picoseconds due to their high computational cost. As a result, equilibration and sampling methodologies can have a significant effect on the behavior of AIMD simulations. We thus compared two equilibration methods for AIMD simulations of systems of common solvents and salts found in lithium air batteries: (1) using an AIMD temperature ramp and (2) using a classical MD simulation followed by a short AIMD simulation, all at the target simulation temperature of 300 K. We also compared two different classical all-atom force fields (PCFF+ and OPLS) and performed multiple simulations for each system. In this talk, I will discuss how the differences between our simulation results and experimental results for properties such as coordination number illustrate the importance of both the equilibration method and independent sampling for extracting experimentally relevant quantities from AIMD simulations.
University
Massachusetts Institute of Technology
Abstract Title
Importance of Equilibration Method and Sampling for Ab Initio Molecular Dynamics Simulations of Solvent - Lithium Salt Systems in Lithium-Air Batteries
Abstract Author(s)
Emily Crabb, Arthur France-Lanord, Graham Leverick, Ryan Stephens, Yang Shao-Horn, Jeffrey Grossman
Username
crabb2016
First Name
Emily
Last Name
Crabb
Program
csgf
Youtube ID
t38rk0YlcQs
Reviewer Approved
Yes
Abstract Type
presentation

Add new comment

Filtered HTML

  • Web page addresses and email addresses turn into links automatically.
  • Allowed HTML tags: <a href hreflang> <em> <strong> <cite> <blockquote cite> <code> <ul type> <ol start type> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.