Data Analysis of Neutron Capture Measurements on ⁷⁵As using DANCE or: What I did last summer.

Paul Ellison 2009 DOE SSGF Annual Fellow's Conference July 14th, 2009

Outline

- What is neutron capture?
- Why study neutron capture of ⁷⁵As?
- Detector for Advanced Neutron Capture Experiments
- Data Analysis
 - Energy and time calibration
 - Background subtraction
 - Adjusting gates on data to maximize signal-to-noise
 - Calculation of DANCE efficiency
- Results

Neutron capture basics

- Nucleus picks up a neutron and forms an excited nuclear state with energy equal to the neutron separation energy (Q-value)
- Releases this energy by gamma ray emission
- Emits 3 7 gamma rays with total energy of ~5 – 8 MeV, depending on Q-value

Neutron capture basics (cont.)

- At low neutron energy, observe increasing cross section
- Observe resonances where cross section drastically increases (3 5 orders of magnitude)

Measuring cross section

Why study neutron capture of ⁷⁵As?

- Stockpile Stewardship
 - ⁷³As/⁷⁴As ratio used as high energy (E_n > 10.2 MeV) neutron fluence monitor by testing program

Something more about nuclear astrophysics?

- Nuclear astrophysics
 - Important to the slow-neutron-capture-process of stellar nucleosynthesis
 - Produces of ~1/2 of all elements heavier than iron
 - Occurs in relatively low neutron density and temperature stars

Detector for Advanced Neutron Capture Experiments (DANCE)

- DANCE is a highly segmented, high efficiency BaF₂ gamma ray detector array to measure neutron capture cross sections
- Neutrons produced through pulsed 800 MeV protons on a moderated tungsten spallation target

- Energy of neutron causing an event can be distinguished by time-of-flight between beam pulse and event time
- Measures neutron capture information as a function of neutron energy for milligram quantity targets of stable and radioactive (halflife >100 days, <1 Ci) targets
- Situated at the Los Alamos Neutron Science Center at Los Alamos National Laboratory

Data Analysis - Energy and time calibration

- Time calibration essentially a neutron energy calibration
- Energy calibration done in two ways
 - Y-88 source (898 keV, 1836 keV)
 - Radium impurities in BaF₂ crystals (4.78 MeV alpha particles), distinguished from gammas by pulse shape

Data analysis - Background sources

- Scattered neutrons capturing in BaF₂ crystals
- Scattered photons coming from up beam line
- Decay of naturally occuring radioisotopes

Data analysis - Background subtraction

- On- / Off-resonance analysis
 - Background contains exact experimental conditions as experiment
 - Only gives you background information at neutron energies of the resonances
- Analyze blank data
 - Allows you to calculate background at any neutron energy
 - No background from beam scattered in target

Data analysis - Improving signal-tonoise

- Background is dependent on total gamma energy and multiplicity
 - Allows for a normalization of background to experimental data prior to subtraction
- Putting cuts on the total gamma ray energy and multiplicity gives better signal-to-noise ratio and smaller errors on end cross section value
 - Allows for the calculation of the optimal energy and multiplicity gate for the lowest error

Data analysis – Examining the gamma ray distibution

- Different resonances correspond to different nuclear excitation levels
 - Therefore have a nuclear spin and parity
- Gamma ray emission is highly dependent on the spin and parity of the decaying state
- Thus, the gamma ray emission distribution ratio may be spin state dependent.

Data analysis - Selecting neutron energy bins

- Using the Ti-backing background subtraction, we can get net counts for all neutron energies
- Selection of neutron energy bins is important
 - Must be small enough to see energy dependent features
 - Must be large enough to have good statistics

Results

- Several steps were still necessary to get an actual cross section measurement
 - The ~700 µg ⁷⁵As target needed to be mass analyzed to get exact mass
 - The beam monitor data needed to be analyzed to get the beam intensity as a function of neutron energy
- However, can generate a normalized plot by:
 - Using empirical formula for beam flux
 - Normalizing data to literature data for the largest 47 eV resonance

Acknowledgements

- Nuclear Chemistry Team in the Nuclear and Radiochemistry Group in the Chemistry Division of LANL
 - Dave Vieira, August Keksis, Marian Jandel, Bob Rundberg, Todd Bredeweg
- DOE/NNSA Stewardship Science Graduate Fellowship and the Krell Institute