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A few background questions … 

• Who is a “new” fellow? 

1st year fellow? 

2nd year fellow? 

 

• Who has heard of MPI? 

programmed in MPI? 

OpenMP (or other threading mechanisms)? 

CUDA (or other accelerator) programming language? 
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The ground rules for our discussion … 

• We won’t embark on “religious” discussions 

– vi/vim vs emacs 

– GPUs vs many-core vs <insert favorite architecture here> 

– Fortran vs C vs C++ OR CUDA vs OpenACC vs OpenMP 

 

• Questions, interruptions, discussions are highly encouraged 

 

• An hour isn’t long enough to cover all the possible topics that we 
could discuss 

– The following is just a starting point in hopes of sparking thought on 
broader topics related to computational science 
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A few assumptions we should make … 

• I don’t claim to be successful 

– But I’ve made enough mistakes that hopefully you can avoid a few 
of them 

 

• This is not a talk I’ve given before (nor is it overly technical) 

– Feedback on topics you would have liked or were expecting to see 
would be appreciated 

 

• My background is in numerical methods and algorithms 
applied to continuum PDEs 

– Our topics will be general and high level, but any examples I 
discuss will likely be from this viewpoint 
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Our Goal: Define a successful 

computational scientist 

 

Computer  

Science 
Mathematics 

Science  

and  

Engineering 

Computational  

Scientist 

Computational science is neither computer science, 

mathematics, some traditional field of science, 

engineering, a social science, nor a humanities’ field.   

It is a blend. 
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The Computational Science Process 
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The Three A’s that are required … 

 A computational science investigation should include 

 An Application - a scientific problem of interest  and the 
components of that problem that we wish to study and/or 
include.  

 Algorithm - the numerical/mathematical representation of that 
problem, including any numerical methods or recipes used to 
solve the algorithm. 

 Architecture – a computing platform and software tool(s) used 
to compute a solution set for the algorithm.  

• A fourth “A” is increasingly becoming important: Analysis of the 
simulation results and comparison with experimental 
measurements or observations. 
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The Computational Science Process 

Application 

Architecture 

Analysis 

Algorithm 

A successful computational scientist 

will address this entire “life cycle” 
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The Computational Science Process 

Application 

Architecture 

Analysis 

Algorithm 

A successful computational scientist 

will address this entire “life cycle” 
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Why HPC? = Science drivers 

“Computational simulation offers to enhance, 
as well as leapfrog, theoretical and experimental 
progress in many areas of science and 
engineering…”  

  A Science-Based Case for Large-Scale Simulation (SCaLeS Report), 
Office of Science, U.S. DOE, July 2003 

Advanced 

energy systems Biotechnology 

Environmental 

modeling Nanotechnology 

 Fuel cells 

 Fusion 

 Genomics 

 Cellular 
dynamics 

 Climate 
prediction 

 Pollution 
remediation 

 Sensors 

 Storage 
devices 
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Environment 

global climate 

contaminant 

transport 

 

 Lasers & Energy 

combustion  

ICF 

Engineering 

crash testing 

aerodynamics 

Biology 

drug design 

genomics 

Experiments  

controversial 

Applied 

Physics 

radiation transport 

supernovae 

Experiments prohibited or 

impossible 

Scientific  

Simulation 

Experiments 

dangerous 

In these, and many other areas, simulation 

is an important complement to experiment. 

Experiments difficult  

to instrument 

Experiments 

expensive  

The imperative of simulation 

Slide from D. Keyes 
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Challenges of Application Representation 

• Too much simplification can lead to an unrealistic model 

– Trusting the results obtained with the model will be difficult 

 


 

Physical/Chemical processes in climate 

Mathematicians favorite equation 
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Challenges of Application Representation 

• Too much detail leads to results that may be problematic to 
implement and debug, difficult to solve and impossible to 
analyze/interpret 
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The Computational Science Process 

Application 

Architecture 

Analysis 

Algorithm 
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Algorithmic Challenges 

• We’ve chosen a problem to study and created a 
mathematical model for it 

How do we actually approach 

solving this equation? 
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Common Computational Motifs 

• High-end simulation in the physical sciences can generally 
be represented by a few computational patterns 

– Dense Linear Algebra 

– Sparse Linear Algebra 

– Fast Fourier Transform 

– Particles 

– Monte Carlo approaches 

– Structured Grids/Meshes 

– Unstructured Grids/Meshes 

“Defining Software Requirements for Scientific Computing”, Phillip Colella, 2004 

Caution: This list is not all-

encompassing.  There 

have been modifications 

and additions proposed to 

cover a broader range of 

applications. 
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Common Computational Motifs 

• High-end simulation in the physical sciences can generally 
be represented by a few computational patterns 

– Dense Linear Algebra 

– Sparse Linear Algebra 

– Fast Fourier Transform 

– Particles 

– Monte Carlo approaches 

– Structured Grids/Meshes 

– Unstructured Grids/Meshes 

“Defining Software Requirements for Scientific Computing”, Phillip Colella, 2004 

These motifs have a 

pattern of computation 

and communication 

shared amongst 

applications 

 

These motifs are well-

defined targets from 

algorithmic, software, and 

architecture standpoints 
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Why are motifs important to you? 

• Gives you a vocabulary/organization to talk across 
disciplinary boundaries 

• Define building blocks for creating libraries that cut across 
application domains 

Dense 
Linear 

Algebra 

Sparse 
Linear 

Algebra 

FFT Particles Monte 
Carlo 

Structured 
Grids 

Unstructured 
Grids 

ScaLAPACK 
SuperLU 

PETSc 
Trilinos 

FFTW Overture 
Chombo 

Cubit 
 

List of software libraries is not complete nor all encompassing. 
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Why are motifs important to me? 

• Define minimum set of necessary functionality for new 
hardware/software systems and help to ensure algorithm 
coverage for testing/acceptance 

• “Anti-benchmarks” not tied to code or language artifacts ⇒ 
encourage innovation in algorithms, languages, data 
structures, and/or hardware 

• They decouple research in computer science and 
mathematics without waiting years for full application 
implementation/development 
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That’s all I need to know about algorithms? 

 

Application 

Architecture 

Analysis 

Algorithm 

The implementation of a numerical 

method on an architecture 



21 

Programming Models 

Matlab/Python 

MPI 

MPI + X 

Accelerator Programming 

Increasing 

Programming 

Complexity 

Requires 

Increase in 

Exposed 

Parallelism 
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Distributed Programming with MPI 

• Strategy: Domain Decomposition 

– Generally used for high(er)-fidelity simulations where the time-to-
solution is too long on one processor or the resolution is not 
sufficient 

 

in three slides 
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Distributed Programming with MPI 

• Strategy: Domain Decomposition 

– Pass data between processes running on different nodes 

in three slides 
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Distributed Programming with MPI 

• Strategy: “Naively” parallel simulations 

– Generally used for parameter sweeps or an ensemble of 
simulations that are very similar 

in three slides 
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Distributed Programming with MPI 

• Challenges you may encounter 

– As the number of MPI “ranks” (processes) grows, communication 
across the network can become contentious 

• Design algorithms to avoid “all-to-all” communication patterns if possible 

 

– As your ensembles come quite large, managing your “workflow” 
can be difficult 

 

 

in three slides 
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Shared Memory Programming 

• Modern hybrid shared/distributed memory systems using 
multi-core processors 

– Inter/intra node communication 

– Each thread handles a subset of the calculations 

 

in one slide 
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CPU CPU 

CPU CPU 

CPU CPU 

CPU CPU 

CPU CPU 

CPU CPU 

CPU CPU 

CPU CPU 

Pthreads or OpenMP Pthreads or OpenMP 

Pthreads or OpenMP Pthreads or OpenMP 
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Accelerator Programming 

• Modern heterogeneous systems are using accelerators 

– The cost of data movement becomes the bottleneck 

– Keeping the accelerator “fed” to take advantage of the large 
number of flops available is challenging 

 

in one slide 
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OLCF’s “Titan” system 
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Many-Core 
Architecture 

Nersc’s future “Cori” system 

Many-Core 
Architecture 

CPU cores 

Accelerator 
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The Computational Science Process 

Application 

Architecture 

Analysis 

Algorithm 

Analysis can equal Big Data 
That’s a whole ‘nother hour … 
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Our Goal: Define a successful 

computational scientist 

• We’ve talked about the life cycle of computational science 
and abstract “tools” at each stage, but  

How do we measure success? 

 

 

The largest (in core count) simulation in the world? 

The highest-resolution? 

The most efficient (in terms of flops)? 

 

The most impactful scientific result 

Advantage:  

Very quantifiable 

Admittedly 

nebulous 
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What I’m Thinking About These Days … 

and hopefully you will too  

• Changing architectural landscape 

– (Software) Application Portability 

• The disruptive transition with the advent of accelerators and many-core chips 
and resulting challenges for application developers to use all available 
supercomputers 

– (Software) Application Readiness 

• Ensuring that applications are prepared to take advantage of coming 
architectures 

• Ensuring that tools are available to application developers (compilers, 
debuggers, profilers, etc) 
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What I’m Thinking About These Days … 

and hopefully you will too  

• Algorithmic innovations needed for emerging architectures 

– Fault tolerance and resilience 

• Increasingly larger computers generally means the “Mean Time to Failure” of 
hardware decreases. 

• Application developers have to be ready for this and guard against it 
themselves for the foreseeable future 

• “Big Data” 

– Challenges for applications to appropriately (and efficiently) 
read/write large amounts of data 

– Computing needs for analytics of simulation data and how that 
differs from our traditional “Big Compute” approach 

– Integration of (large) experimental data into our simulation 
frameworks 
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Take Home Thoughts 

 Identify an appropriate mathematical model that accurately 
represents the physical phenomena without being overly 
complicated 

 Leverage existing software libraries for common 
computational kernels 

 Exposing parallelism in your algorithms and 
implementation is continuing to grow in importance 

 Future application development challenges due to 
architecture evolution and growth of simulation and 
experimental data 
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Final Advice and an Advertisement 

• Computational science is not a field that is practiced alone.  
It generally requires teamwork and recognition of others’ 
expert knowledge and skills. 

Friday July 25, 2014 

Thanks to Heather Mayes for reminding me every year! 
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Recommended Reading 

• Krste Asanovíc, Rastislav Bodik, Bryan Catanzaro, Joseph Gebis, 
Parry Husbands, Kurt Keutzer, David Patterson, William Plishker, 
John Shalf, Samuel Williams, and Katherine Yelick.  The Landscape of 
Parallel Computing Research: A View from Berkeley. Electrical 
Engineering and Computer Sciences University of California at 
Berkeley.  Technical Report No. UCB/EECS-2006-18 

– http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.html 

• Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu 
Huang, Hanjun Kim, Nick P. Johnson, Feng Liu, Soumyadeep Ghosh, 
Stephen Beard, Taewook Oh, Matthew Zoufaly, David Walker, and 
David I. August.  A Survey of the Practice of Computational 
Science.  Proceedings of the 24th ACM/IEEE Conference on High 
Performance Computing, Networking, Storage and Analysis (SC), 
November 2011.  

 

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
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Questions? 
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