
Supercomputing 102:

The Toolbox of a Successful

Computational Scientist

Presented by:

Judith Hill
Task Lead for Scientific Computing Liaisons

Oak Ridge Leadership Computing Facility (OLCF)
National Center for Computational Sciences (NCCS)

CSGF Program Review: HPC Workshop

July 17, 2014
Washington, DC

2

A few background questions …

• Who is a “new” fellow?

1st year fellow?

2nd year fellow?

• Who has heard of MPI?

programmed in MPI?

OpenMP (or other threading mechanisms)?

CUDA (or other accelerator) programming language?

3

The ground rules for our discussion …

• We won’t embark on “religious” discussions

– vi/vim vs emacs

– GPUs vs many-core vs <insert favorite architecture here>

– Fortran vs C vs C++ OR CUDA vs OpenACC vs OpenMP

• Questions, interruptions, discussions are highly encouraged

• An hour isn’t long enough to cover all the possible topics that we
could discuss

– The following is just a starting point in hopes of sparking thought on
broader topics related to computational science

4

A few assumptions we should make …

• I don’t claim to be successful

– But I’ve made enough mistakes that hopefully you can avoid a few
of them

• This is not a talk I’ve given before (nor is it overly technical)

– Feedback on topics you would have liked or were expecting to see
would be appreciated

• My background is in numerical methods and algorithms
applied to continuum PDEs

– Our topics will be general and high level, but any examples I
discuss will likely be from this viewpoint

5

Our Goal: Define a successful

computational scientist

Computer

Science
Mathematics

Science

and

Engineering

Computational

Scientist

Computational science is neither computer science,

mathematics, some traditional field of science,

engineering, a social science, nor a humanities’ field.

It is a blend.

6

The Computational Science Process

7

The Three A’s that are required …

 A computational science investigation should include

 An Application - a scientific problem of interest and the
components of that problem that we wish to study and/or
include.

 Algorithm - the numerical/mathematical representation of that
problem, including any numerical methods or recipes used to
solve the algorithm.

 Architecture – a computing platform and software tool(s) used
to compute a solution set for the algorithm.

• A fourth “A” is increasingly becoming important: Analysis of the
simulation results and comparison with experimental
measurements or observations.

8

The Computational Science Process

Application

Architecture

Analysis

Algorithm

A successful computational scientist

will address this entire “life cycle”

9

The Computational Science Process

Application

Architecture

Analysis

Algorithm

A successful computational scientist

will address this entire “life cycle”

10

Why HPC? = Science drivers

“Computational simulation offers to enhance,
as well as leapfrog, theoretical and experimental
progress in many areas of science and
engineering…”

 A Science-Based Case for Large-Scale Simulation (SCaLeS Report),
Office of Science, U.S. DOE, July 2003

Advanced

energy systems Biotechnology

Environmental

modeling Nanotechnology

 Fuel cells

 Fusion

 Genomics

 Cellular
dynamics

 Climate
prediction

 Pollution
remediation

 Sensors

 Storage
devices

11

Environment

global climate

contaminant

transport

 Lasers & Energy

combustion

ICF

Engineering

crash testing

aerodynamics

Biology

drug design

genomics

Experiments

controversial

Applied

Physics

radiation transport

supernovae

Experiments prohibited or

impossible

Scientific

Simulation

Experiments

dangerous

In these, and many other areas, simulation

is an important complement to experiment.

Experiments difficult

to instrument

Experiments

expensive

The imperative of simulation

Slide from D. Keyes

12

Challenges of Application Representation

• Too much simplification can lead to an unrealistic model

– Trusting the results obtained with the model will be difficult



Physical/Chemical processes in climate

Mathematicians favorite equation

13

Challenges of Application Representation

• Too much detail leads to results that may be problematic to
implement and debug, difficult to solve and impossible to
analyze/interpret

14

The Computational Science Process

Application

Architecture

Analysis

Algorithm

15

Algorithmic Challenges

• We’ve chosen a problem to study and created a
mathematical model for it

How do we actually approach

solving this equation?

16

Common Computational Motifs

• High-end simulation in the physical sciences can generally
be represented by a few computational patterns

– Dense Linear Algebra

– Sparse Linear Algebra

– Fast Fourier Transform

– Particles

– Monte Carlo approaches

– Structured Grids/Meshes

– Unstructured Grids/Meshes

“Defining Software Requirements for Scientific Computing”, Phillip Colella, 2004

Caution: This list is not all-

encompassing. There

have been modifications

and additions proposed to

cover a broader range of

applications.

17

Common Computational Motifs

• High-end simulation in the physical sciences can generally
be represented by a few computational patterns

– Dense Linear Algebra

– Sparse Linear Algebra

– Fast Fourier Transform

– Particles

– Monte Carlo approaches

– Structured Grids/Meshes

– Unstructured Grids/Meshes

“Defining Software Requirements for Scientific Computing”, Phillip Colella, 2004

These motifs have a

pattern of computation

and communication

shared amongst

applications

These motifs are well-

defined targets from

algorithmic, software, and

architecture standpoints

18

Why are motifs important to you?

• Gives you a vocabulary/organization to talk across
disciplinary boundaries

• Define building blocks for creating libraries that cut across
application domains

Dense
Linear

Algebra

Sparse
Linear

Algebra

FFT Particles Monte
Carlo

Structured
Grids

Unstructured
Grids

ScaLAPACK
SuperLU

PETSc
Trilinos

FFTW Overture
Chombo

Cubit

List of software libraries is not complete nor all encompassing.

19

Why are motifs important to me?

• Define minimum set of necessary functionality for new
hardware/software systems and help to ensure algorithm
coverage for testing/acceptance

• “Anti-benchmarks” not tied to code or language artifacts ⇒
encourage innovation in algorithms, languages, data
structures, and/or hardware

• They decouple research in computer science and
mathematics without waiting years for full application
implementation/development

20

That’s all I need to know about algorithms?

Application

Architecture

Analysis

Algorithm

The implementation of a numerical

method on an architecture

21

Programming Models

Matlab/Python

MPI

MPI + X

Accelerator Programming

Increasing

Programming

Complexity

Requires

Increase in

Exposed

Parallelism

22

Distributed Programming with MPI

• Strategy: Domain Decomposition

– Generally used for high(er)-fidelity simulations where the time-to-
solution is too long on one processor or the resolution is not
sufficient

in three slides

23

Distributed Programming with MPI

• Strategy: Domain Decomposition

– Pass data between processes running on different nodes

in three slides

CPU

m
em

o
ry

N
et

w
o

rk

CPU

m
em

o
ry

N
et

w
o

rk

CPU

m
em

o
ry

N
et

w
o

rk

CPU

m
em

o
ry

N
et

w
o

rk

24

Distributed Programming with MPI

• Strategy: “Naively” parallel simulations

– Generally used for parameter sweeps or an ensemble of
simulations that are very similar

in three slides

CPU

m
em

o
ry

N
et

w
o

rk

CPU

m
em

o
ry

N
et

w
o

rk

CPU

m
em

o
ry

N
et

w
o

rk

CPU
m

em
o

ry

N
et

w
o

rk

25

Distributed Programming with MPI

• Challenges you may encounter

– As the number of MPI “ranks” (processes) grows, communication
across the network can become contentious

• Design algorithms to avoid “all-to-all” communication patterns if possible

– As your ensembles come quite large, managing your “workflow”
can be difficult

in three slides

26

Shared Memory Programming

• Modern hybrid shared/distributed memory systems using
multi-core processors

– Inter/intra node communication

– Each thread handles a subset of the calculations

in one slide

m
em

o
ry

N
et

w
o

rk

m
em

o
ry

N
et

w
o

rk

m
e

m
o

ry

N
et

w
o

rk

m
em

o
ry

N
et

w
o

rk

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

CPU CPU

Pthreads or OpenMP Pthreads or OpenMP

Pthreads or OpenMP Pthreads or OpenMP

27

Accelerator Programming

• Modern heterogeneous systems are using accelerators

– The cost of data movement becomes the bottleneck

– Keeping the accelerator “fed” to take advantage of the large
number of flops available is challenging

in one slide

N
et

w
o

rk

m
em

o
ry

N
et

w
o

rk

CPU cores

Accelerator

OLCF’s “Titan” system

m
em

o
ry

m
em

o
ry

N
et

w
o

rk

m
em

o
ry

N
et

w
o

rk

Many-Core
Architecture

Nersc’s future “Cori” system

Many-Core
Architecture

CPU cores

Accelerator

m
em

o
ry

m

em
o

ry

28

The Computational Science Process

Application

Architecture

Analysis

Algorithm

Analysis can equal Big Data
That’s a whole ‘nother hour …

29

Our Goal: Define a successful

computational scientist

• We’ve talked about the life cycle of computational science
and abstract “tools” at each stage, but

How do we measure success?

The largest (in core count) simulation in the world?

The highest-resolution?

The most efficient (in terms of flops)?

The most impactful scientific result

Advantage:

Very quantifiable

Admittedly

nebulous

30

What I’m Thinking About These Days …

and hopefully you will too

• Changing architectural landscape

– (Software) Application Portability

• The disruptive transition with the advent of accelerators and many-core chips
and resulting challenges for application developers to use all available
supercomputers

– (Software) Application Readiness

• Ensuring that applications are prepared to take advantage of coming
architectures

• Ensuring that tools are available to application developers (compilers,
debuggers, profilers, etc)

31

What I’m Thinking About These Days …

and hopefully you will too

• Algorithmic innovations needed for emerging architectures

– Fault tolerance and resilience

• Increasingly larger computers generally means the “Mean Time to Failure” of
hardware decreases.

• Application developers have to be ready for this and guard against it
themselves for the foreseeable future

• “Big Data”

– Challenges for applications to appropriately (and efficiently)
read/write large amounts of data

– Computing needs for analytics of simulation data and how that
differs from our traditional “Big Compute” approach

– Integration of (large) experimental data into our simulation
frameworks

32

Take Home Thoughts

 Identify an appropriate mathematical model that accurately
represents the physical phenomena without being overly
complicated

 Leverage existing software libraries for common
computational kernels

 Exposing parallelism in your algorithms and
implementation is continuing to grow in importance

 Future application development challenges due to
architecture evolution and growth of simulation and
experimental data

33

Final Advice and an Advertisement

• Computational science is not a field that is practiced alone.
It generally requires teamwork and recognition of others’
expert knowledge and skills.

Friday July 25, 2014

Thanks to Heather Mayes for reminding me every year!

34

Recommended Reading

• Krste Asanovíc, Rastislav Bodik, Bryan Catanzaro, Joseph Gebis,
Parry Husbands, Kurt Keutzer, David Patterson, William Plishker,
John Shalf, Samuel Williams, and Katherine Yelick. The Landscape of
Parallel Computing Research: A View from Berkeley. Electrical
Engineering and Computer Sciences University of California at
Berkeley. Technical Report No. UCB/EECS-2006-18

– http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-
183.html

• Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu
Huang, Hanjun Kim, Nick P. Johnson, Feng Liu, Soumyadeep Ghosh,
Stephen Beard, Taewook Oh, Matthew Zoufaly, David Walker, and
David I. August. A Survey of the Practice of Computational
Science. Proceedings of the 24th ACM/IEEE Conference on High
Performance Computing, Networking, Storage and Analysis (SC),
November 2011.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

35

Questions?

36

