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Outline

= Nuclear Reactor Simulation

= Next-generation High Performance Computing

= Three algorithmic exemplars
— Particle vs. classic PDE-based methods
e extreme concurrency

— Cross section lookup vs. on-the-fly reconstruction
* memory access vs. FLOP/s

— Reduction of synchronicity in timestepping algorithms
e Inherent machine-induced load imbalances
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Nuciear Reactor Counled Neutronics/Hydraulics

pper Grid

Flow Distributor

Incore Instrument
Gusde Tubes

Vessel > Core > FuelAssembly > Fuel Rod - Nozzles/Spacer > Fuel Pellet
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Boltzmann Neutron Transport coupled to Incompressible Navier-Stokes
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e
Spatial Resolution Requirements
Neutronics
200 assemblies/core

264 pins/assembly
500

CFD (LES)
200  assemblies/core
10  spacers/assembly
pellets/pin 2B grid points/spacer
10 rings/pellet
300 Million Regions
400 isotopes/ring
1 T-byte of memory

4 Trillion Grid Points

5 unknowns/grid point
200 words storage

~5 PB of memory

Grids are mismatched > 10,000-to-1 at spacers.




Taxonomy of methods for transport equation

Stochastic Deterministic
Differential Integral
Monte Carlo Transport Transport
Method Equation Equation
Spherical Discrete \ — v —
Harmonics (P,,) Ordinates (S,) [+ Collision Probability
\\
Method of Characteristics
2-DI1-D
Approximation
Diffusion
Approximation

From Brendan Kochunas, Ph.D. Thesis
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Next-generation High Performance Computing
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Where are we now?
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Performance (GFlop/s)
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National University of Defense
Technology

Tianhe-2 (MilkyWay-2) - TH-IVB-FEP
Cluster, Intel Xeon E5-2692 12C
2.200GHz, TH Express-2, Intel Xeon
Phi 31S1P

DOE/SC/Oak Ridge National
Laboratory
United States

Titan - Cray XK7 , Opteron 6274 16C
2.200GHz, Cray Gemini interconnect,
NVIDIA K20x

DOE/NNSA/LLNL
United States

Sequoia - BlueGene/Q, Power BQC
16C 1.60 GHz, Custom

RIKEN Advanced Institute for
Computational Science (AICS)

K computer, SPARC64 VIiIifx 2.0GHz,
Tofu interconnect

DOE/SC/Argonne National
Laboratory
United States

Mira - BlueGene/Q, Power BQC 16C
1.60GHz, Custom

Texas Advanced Computing
Center/Univ. of Texas
United States

Stampede - PowerEdge C8220,
Xeon E5-2680 8C 2.700GHz,
Infiniband FDR, Intel Xeon Phi SE10P

Cores

3120000

560640

1572864

705024

786432

462462

Rmax

(TFlop/s)

33862.7

17590.0

17173.2

10510.0

8586.6

5168.1

Rpeak

(TFlop/s)

54902.4

27112.5

20132.7

11280.4

10066.3

85620.1

Power

(kW)
17808

8209

7890

12660

3945

4510



Biggest current change at ~10 PF: on-node parallelism

« New Constraints 000,000

— 15 years of exponential
clock rate growth has ended "%

Transistors continue to scale A
| Clock has leveled off (2:4 Ghz)

Power leveled off (~100W-20 W)'(
100,000 1P erformance per clock (2-4 o ock)

* Moore's Law reinterpreted:

— How do we use all of those
transistors to keep
performance increasing at
historical rates? 1.000

10,000

[ — Industry Response: #cores )

per chip doubles every 18 e
months instead of clock /
frequency! 10 7 @
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What are key issues moving forward?

From Shalf et. al.

= From architecture perspective

power + cost Flops TF/node 10 10
— 20-40MW Num. cores Cores/chip 1024 1024
_ $100-150|\/| Num. chips Chips/node 1 1
Mem BW TB/s/node 1 4
Mem Cap GB/node 256 32
2" Mem BW  TB/s/node NA 0.1
= From application perspective: 2" Mem Cap  GB/node NA 1024
programmability L1 cache KB/core 16 16
— Far greater overall concurrency NIC BW GB/s 100 400
— 1000-way shared memory NIC Latency Microsec 4 .02

— Power-aware = reduced data movement = programmable memory hierarchies
— Efficient use of instruction level parallelism

— Efficient use of hyperthreading

— Much less memory core = harder to hide communication costs

— Much less bandwidth per core = data locality critical

— Programmer-aware fault tolerance characteristics

— Inherent processor variability + cost of global sync 2> movement away from BSP

13



This motivates application research in several areas

= Can we extract billion-way concurrency from our applications?
= Can we achieve on-node scalability on shared memory architectures?

= Can we increase computational intensity in data-movement intensive
areas of apps?

= Can we minimize bulk synchronization and make applications robust to
inherent variability?

= Can we mask cost of data movement in low memory per core systems?

14



How do these changes impact our
applications?
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Outline

Three algorithmic exemplars

CSGF
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Outline

Three algorithmic exemplars

Particle vs. classic PDE-based methods

extreme concurrency

CSGF
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Revisiting particle methods for reactor analysis

Stochastic Deterministic
Differential Integral
Monte Carlo Transport Transport
Method Equation Equation
Spherical Discrete \ — v —
Harmonics (P,,) Ordinates (S,) [+ Collision Probability
\\
Far too slow Method of Characteristics
Extreme 2-D/1-D
concurrency — Apprommatlon
Diffusion
“ ” Approximation
exact i

PDE-based, bandwidth limited

Fast

Approximate
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Do exascale machines favor Monte Carlo methods?
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At high level MC algorithm very simple

Initialize initial neutron positions
____________ for each batch
------------ for each particle in batch
____________ while (not absorbed)
move particle to next interaction point
lookup material at collision point
for each nuclide in material
for each reaction type
look up micro cross-section
build macro cross section
sample reaction // either collision or absorption
____________ end
sample if fission occurred //guaranteed absorbed here
if fission
- tally //one type of tally, others possible
- add new source sites
____________ end
resample source sites //for steady state calculation
estimate eigenvalue
------------ end
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At high level MC algorithm very simple

Initialize initial neutron positions
____________ for each batch

------------ for each particle in batch Perfectly parallel

____________ while (not absorbed)
move particle to next interaction point
lookup material at collision point
for each nuclide in material
for each reaction type
look up micro cross-section
build macro cross section
sample reaction // either collision or absorption
____________ end
sample if fission occurred //guaranteed absorbed here
if fission
- tally //one type of tally, others possible
- add new source sites
____________ end
resample source sites //for steady state calculation
estimate eigenvalue
------------ end

Problem? Read-dominated




The Scale of Monte Carlo LWR Problem - tracking rate

« Target accuracy for reactor analysis requires billions of particles
» Thus, reducing time to solution at exascale is a critical focus area

« This goes hand and hand with data decomposition choices
» Potentially longer tracking times

« Scalable algorithms/hardware for on-node parallelism critical to
success of Monte Carlo at exascale

<=1.0% Statistical uncertainty (2-sigma) of tallies
~10-20 Outer iterations (batches)
~ 300 Tracking rate (particles/sec) with current algorithms
~ 25,000,000,000 Particles simulated per batch
~100,000,000,000 Bytes of cross section data to access
~ 1Million Core-hours to calculate one state point with current

methods



The Scale of Monte Carlo LWR Problem - tally memory

Detailed spatial tallies required to
calculate fuel isotopic inventories

For a robust reactor simulation, tally data
for one fixed point calculation is ~1Tb

Efficient decomposition methods are
needed at exascale
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R
The Scale of Monte Carlo LWR Problem - cross-section memory

« Particle tracking requires cross-section lookup at each
Interaction or change of material region

* Fission cross section U-235
- Cross-section value depends on energy, ¢ U-238 3
nuclide, reaction type, and temperature *¥

o

» This results in very large lookup tables thaj;
need to be read per particle per interaction |
(tenths of milliseconds)

lww.‘ "

161 | | Lol Lol ol vl Lo

157 15% 157 154

Energy CHevy

157 152 15t

~100,000 Cross section energy levels
300-400 Nuclides in fuel region
~50-100 Discrete temperature values
5-10 Reaction types
~300,000,000,000 Bytes of cross section data

4‘:’ 25
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Outline

— Cross section lookup vs. on-the-fly reconstruction
¢ memory access vs. FLOP/s

CSGF
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Replacing loads with FLOP/s

= Wall clock time can potentially be solved by concurrency
= Tally memory can potentially be solved by domain decomposition (or tally servers)
= Cross section memory more problematic

= |dea: if FLOP/s are cheap on next-generation machines, can we compute data “on-
the-fly”?

28




Monte Carlo Cross Section Representations

Interaction cross section data fall into three categories:
Bound thermal scattering: S(a.,3) tables vs. momentum, energy ( 0.5% of data)
Unresolved resonance region: Probability tables vs. energy ( 1.5% of data)
Resolved resonance region cross sections: point-wise data (48.0% of data)
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Secondary distribution data (needed onfy*after interaction selected) (50% of data)

Point-wise data evaluation totally dominates Monte Carlo run-time considerations



Current Cross Section Representation for Monte Carlo

Continuous piece-wise linear function from 1.e-5 eV to 20.0 MeV are generated using NJOY
Reconstructed with an accuracy of < 0.1% relative to experimental physics data

Linear tables permit rapid cross section interpolation at run-time

Evaluations of cross sections consumes > 90% of Monte Carlo execution time (with 400 isotopes)
Single-temperature data library for 400 isotopes is ~ 1 G-byte
Reactors require temperatures from 0 to 3000K

Functions: Breit-Wigner
T T I ! T i T y T

0K 1.00

6/0ax

1000 K 0.50

10,000K 0.00

U235 cross-section vs. neutron energy for 3 temperatures

Thermal motion causes a “smearing” of cross sections at high temperature

v



Using Physics and FLOPS to Reduce Resonance Data Movement

We are developing an alternative physics-based method designed to permit:

Transformation of resonance data into “Generalized Multi-Pole” form

(Huang 1987, achieves factor 20 data reduction) FEGC GGG GG
p b T Y Y e el Y

Furations: Beok-Wigne:

Store only OK data (temperature dependence is on-the-fly) ool A -
| A

Point-wise data library is never constructed; rather data d [

is generated on-the-fly for any each interacting neutron’s energy | /*—wﬁi )
I i : \

Represent all reactions of each isotope with the same Poles ot i a a1

(eliminate cache misses associated with looping over 3 reactions) = Faten iy

Exact Doppler broadening is achieved with psi/chi-like functions
(evaluated directly from Faddeeva functions)

: Im(z]

Forget, Xu, and Smith. Annals of Nuclear Energy (under review)




..
Multi-Pole Resonance Modeling

Example of very complicated isotope U238

Today’s linear data requires about 150,000 energy points
(150,000 x 3 reaction types x 2 data elements x 8 bytes) = 7 M-bytes

Multi-pole U238

Data has 11,500 Poles [(1 real + 1 imaginary) x (2/ + 1) for ~3300 resonances]
(11,500 x 3 reaction types x 8 bytes) = 0.25 M-bytes

Reduce-Pole Representation of Huang (1992) treats smooth poles by regression:

Data has 3,500 Poles [(1 real + 1 imaginary) x (2/ + 1) for ~3300 resonances]
(3,500 x 3 reaction types x 8 bytes) = 0.08 M-bytes

Massive data reduction will drastically reduce data movement and improve cache performance
Small amount of data will also make GPU-like applications much more attractive.
Tradeoffs of FLOPS for Memory

~10-20 resonances contribute to each point-wise cross section
Faddeeva function must be evaluated for each resonance



Outline

— Reduction of synchronicity in timestepping algorithms
e Inherent machine-induced load imbalances

CSGF
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Bulk syncrhonicity

= Equal work !=equal time on next generation machines

= Removal of bulk synchronization points will be one key to getting good
scalability

m  |ots of work in this area

— e.g. Demmel on aasychronous Krylov solvers.

= Qutinitial interest also includes explicit timestepping methods

34




Algorithm 1: Naive Approach to Explicit PDE Iterations

input: The number of time-steps, nsteps and the initial state of the
medium

for 1 < 1 to nsteps do

Initiate Ghost Cell Exchange ; // MPI_ISend/IRecv
Update Interior Region of Processor’s Stencil Domain ;

Finalize Exchange of Ghost Points ; // MPI Waitall

| Update Border of Processor’s Stencil Domain ;

Algorithm 2: Main Method Block of Noise Resistant Algorithm

i

©C N kW

10
11

// Boolean chooses right or left processor for exchange
Set tryLeftFirst:= mpi-rank mod 2 ;

Initialize Cell Exchange Between current and neighboring processors ;

while ¢tm < nsteps or [l > 1 or zr < nzxl+ 1 do

if tryGhost (tryLeftFirst) or tryGhost (ItryLeftFirst) then
‘ Toggle tryleftFirst value ;

else if tm < nsteps and zl + 3 < zr then
‘ processMiddle;

else
‘ Return index of MPI Waitany call;

end

end

35
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Fundamental architecture changes on path to exascale

Will become increasingly difficult to make efficient use of leadership class
machines

These are forcing communities to consider fundamental new approaches

— Not simply a matter of recoding existing algorithms

Extreme concurrency + cost of power and thus data movement is the driving force
to consider redundant re-computation vs. loads.
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Extreme Concurrency

« Billion way concurrency potentially favors particle-based
methods

* Every particle is tracked independently (neutrons)

« Tens of billions required for single depletion step

« Historically far too slow for required level of convergence

« Many open question, though.

Discretized Boltzmann Discrete particle tracking

Computational mesh Continuous space — tally
regions

Multigroup energy Continuous energy

Parallelization possible by Parallelization by particle,

energy, angle, space space(?), or data

Sparse PDEs — Krylov,
sweeping with coarse-grid
acceleration
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