
Generated using version 3.1.2 of the official AMS LATEX template

Programming Systems on the Road to Exascale Computing

Cyrus Omar

Carnegie Mellon University

Jeffrey Vetter

Oak Ridge National Laboratory

1



ABSTRACT

From the perspective of computational scientists, programming systems are the most visible

component of HPC systems and they serve a critical role in enabling HPC architectures that

are high-performance, energy-efficient, scalable, robust, and productive. However, systems

designed to achieve these goals must handle increasing architectural complexity associated

with hierarchical parallelism, the inertia associated with investments in legacy software and

platforms and a variety of other design requirements. Many of these challenges are already

emerging in today’s multicore and heterogeneous computing systems and recent reports

conclude that the road to Exascale Computing will require addressing these challenges even

more directly. In this survey, we expand upon the design criteria that constrain programming

systems for high-performance computing and highlight some emerging approaches, including

recent research on general-purpose computing on graphics processors.

1



1. Introduction

Computer-aided simulations and data analysis techniques have transformed science and

engineering. Surveys show that scientists and engineers now spend more than 40% of their

time writing software (1; 2). Most of this software targets conventional desktop hardware,

but about 20% of scientists also target either local clusters or supercomputers for more

numerically-intensive computations (2), a number that continues to grow as scientists face

ever-larger datasets and increasingly complex systems, such as those studied in the biological,

environmental and social sciences.

Historically, scientists needing better performance simply purchased new hardware. This

behavior was justified by appealing to Moore’s Law, which has accurately predicted a dou-

bling in the transistor count of integrated circuits every 18 months since the invention of the

transistor in 1958 (3). Although Moore’s Law remains valid, it is projected that by the end

of this decade, the doubling period will increase substantially, due to fundamental physical

limitations. More problematic, however, is that an assumed corollary of Moore’s Law – that

clock speeds will also double every 18 months – is no longer valid. Although transistor counts

have continued to increase, clock speeds have remained flat for several years. It is now widely

acknowledged that further performance gains will require that scientists make effective use

of parallel computation.

Modern high-performance computing systems provide substantial hardware support for

parallel computation. A single node in a cluster or a single workstation may contain several

general-purpose multi-core processors as well as one or more co-processors, such as a GPU,

containing hundreds of specialized compute units. Modern clusters in turn contain many such

nodes – the largest supercomputers today feature hundreds of thousands of nodes. These

machines boast peak performance on the order of 1015 floating point operations per second (1

petaFLOPS). By the end of the decade, researchers hope to achieve a further thousand-fold

increase in peak performance, a goal termed the exascale initiative (4). At this scale, power

consumption, hardware reliability, data movement and storage infrastructure become critical

2



issues. Comprehensively addressing these issues has emerged as one of the grand challenges in

modern computing, and is a major focus of ongoing research spanning a variety of disciplines,

including computer science, computer architecture, applied mathematics and a number of

application domains in science and engineering.

In an ideal world, programmers would simply continue to write programs as they have in

the past, relying on a compiler to optimize them for execution on a variety of hardware con-

figurations at high speed. Unfortunately, such heroic compilers are likely impractical. Many

problems central to automatic parallelization have been shown to be NP-Hard, or require

additional information that can’t be extracted from a program directly, so it is unlikely that

fast, exact, fully-automatic techniques will emerge. Instead, optimization procedures must

increasingly rely on heuristics, profiling data and domain-specific knowledge. Such so-called

‘fuzzy’ approaches tend to require significant human involvement, meaning that program-

mers who hope to make full use of modern high-performance computing hardware must deal

with complex issues beyond those they have faced in programming sequential hardware in

the past. Recognition of this issue has led to calls to develop and improve the programming

systems that developers rely on for assistance with these difficult issues. We use the term

programming systems to encompass a broad range of tools , including operating system APIs,

programming languages, abstractions, libraries, compilers, editing environments, verification

tools, documentation tools and so on.

The ultimate goal of this line of research is to maximize the end-to-end productivity of

practitioners, measured by the time taken by all aspects of the process leading to a desired

scientific result. In taking this view – with its focus on human aspects of software develop-

ment and design in addition to algorithmic and architectural considerations – it is important

to first identify and characterize the developer communities who will use these tools. Re-

searchers typically classify software developers as either end-user developers or professional

developers. End-user developers are those who have little formal training related to the tools

that they use. These tools, as a consequence, tend to be relatively simple (spreadsheets, for

3



example). Professional developers, on the other hand, have explicit training or extensive ex-

perience with software engineering practices and software development tools and techniques.

Unfortunately, scientists and engineers do not cleanly fall into either of these groups. Al-

though formal training in software development is rare (5), scientists and engineers are more

technically literate and demanding than typical end-users. For this reason, researchers now

define a third group, professional end-user developers (6), to describe “people working in

highly technical, knowledge rich professions, such as financial mathematicians, scientists

and engineers, who develop their own software in order to advance their own professional

goals.”

In this survey, we examine the needs of professional end-user developers who currently

work with, or will in the future need to work with, high-performance computing systems,

including future exascale machines. As we do so, we describe both existing and emerging

approaches, noting where additional research and development may be needed. We hope

that the reader will emerge with a clear view of the state of the art and develop a clear,

high-level understanding of the significant challenges remaining as we move toward future

high-performance, high-productivity computing systems and applications.

2. System Software

Systems software is the portion of the programming system typically associated with

the operating system or low-level runtime environment. It is responsible for interacting

with hardware resources, usually in a relatively transparent way to the user. This category

includes operating system APIs, file systems and I/O libraries, and systems management

software (4).

4



a. Operating Systems

Today, some flavor of Linux is the dominant choice in HPC machines. Variants of UNIX,

such as AIX, and lightweight kernel operating systems such as Compute Node Kernel (CNK)

are also used by some vendors (notably, IBM and Cray) (7). Operating system APIs are

the most primitive abstractions available to programmers, so small choices (e.g. in thread

scheduling) can have a large impact on performance. The choices made to accomodate

conventional desktop and server workloads may not be ideal in an HPC context, so there has

been considerable interest in developing HPC-specific operating systems. Exascale machines

introduce additional complications, because resource management will require consideration

of power budgets, and hardware reliability issues will become increasingly prominent. In

some cases, collective decisions may need to be made based on information integrated across

a cluster, further complicating matters.

Researchers differ about whether the simpler, more specialized lightweight kernel (LWK)

operating systems dedicated to high-performance computing applications are better suited

to exascale applications, outweighing the flexibility and broad developer base of systems

based on a general-purpose operating system like Linux. In either case, however, there is a

need for improved APIs for memory and thread management, performance monitoring and

debugging, energy management and access to specialized hardware. To evaluate these APIs

at scale before the associated hardware is available, whole-system simulation techniques must

also be developed. These are all active research areas.

b. File Systems and I/O Libraries

Large, distributed file systems require specialized support at the systems level. A number

of different high-performance file systems are in wide use today, including Lustre, GPFS and

NFS. Together with I/O libraries such as netCDF, HDF5 and MPI-IO, these systems form

the basis for data storage and retrieval on high-performance machines today (7).

5



Unfortunately, it is not clear that these systems can continue to scale without serious

changes. A major component of the overall energy budget of an exascale machine will be

consumed by data movement. Today’s systems are based on traditional file systems and

continue to offer strong guarantees about conflicts, snchronization and coherence. I/O is

also generally thought of as an activity that occurs periodically (e.g. during checkpointing)

or at the end of a simulation, rather than as an activity that occurs on an ongoing basis

throughout a computation. These constraining requirements and assumptions make scaling

a challenge, even as new storage architectures and devices emerge, such as solid state disks.

Fortunately, many applications do not require such strong guarantees in some cases. As

more applications interleave data analysis with computation, relieving a major burden on

I/O systems, they can be targeted to more specialized tasks such as checkpointing, improving

their performance. As such, scalable, purpose-driven, hardware-aware I/O systems that are

more tightly integrated into the programming language and environment are a major focus

of ongoing research.

c. Systems Management

High-performance computing systems require additional management tools to ensure

that needed resources are available and divided amongst users fairly and securely. For

example, batch systems allow users to request jobs on shared machines, and schedule these

jobs in an equitable way on available resources. Popular choices for batch systems include

Torque, MOAB, LoadLeveler and SLURM. A number of other tools are also used by systems

administrators to maintain the cluster’s software systems, monitor hardware and ensure

long-term data integrity. Although there are fewer scaling challenges with this aspect of

the software stack than with some of the others, these tools interact with several aspects

of both the software stack and the hardware, and must be updated as these aspects of the

high-performance computing systems change on the road to exascale.

6



3. Programming Environments

The programming environment consists of the software that developers interact with di-

rectly to develop and debug programs. This category centers around programming languages

and includes parallel programming abstractions, domain-specific abstractions, runtime sys-

tems, compilers, debuggers, performance analysis tools, data analysis and visualization tools,

and editors (4).

Scientists and engineers generally prefer high-level scripting languages like MATLAB,

Python, R and Perl (8), particularly those bundled with powerful domain-specific libraries.

These languages are typically interpreted rather than compiled and generally lack static

type systems, relying instead on run-time (or “dynamic”) type lookup and error handling.

Although this may increase the flexibility of the language, these features also negatively

impact performance and can lead to unexpected run-time errors that are generally impossible

to rule out statically. This is particularly severe given that rigorous software testing practices

are also quite rare in these domains (8). When running at scale, a run-time error can be

very costly, so better verification and testing of scientific code will be necessary.

Along code paths where performance appears to be a bottleneck, developers today turn

to statically-typed, though still unsafe, low-level languages like C and Fortran (9). These

languages give users explicit control over data layout and heap allocation and require explicit

type annotations on all variables. Although this makes writing programs more tedious which

can increase the number of logic errors a programmer makes, it can also potentially improve

performance, particularly if the programmer understands the target architecture well (e.g.

cache behavior). While a sequential reimplementation of a critical code path using a low-

level language will generally produce a modest speedup, more significant speedups on modern

hardware require parallelizing over many processor cores and, on massively-parallel machines,

many interconnected nodes. Despite well-known difficulties, low-level, unsafe approaches

that use a form of shared-memory multithreading (e.g. pthreads, OpenMP) paired with

explicit message passing between nodes (typically using MPI) remain widely used for these

7



tasks as well (9; 10).

Although researchers often propose higher-level language features and new parallel pro-

gramming abstractions that aim to strike a better balance between raw performance, pro-

ductivity, code portability and verifiability (see below), end-users remain skeptical of new

approaches. This viewpoint was perhaps most succinctly expressed by a participant inter-

viewed in a recent study by Basili et al. (10), who stated “I hate MPI, I hate C++. [But]

if I had to choose again, I would probably choose the same.” Although this sentiment is

easy to dismiss as paradoxical, we believe that it demands direct examination by those in

the research community working to advance the practice of scientific and high-performance

computing.

As in many areas of design, it can be difficult to objectively evaluate the merit of lan-

guage and tool designs. To better support such evaluations, researchers in design disciplines

typically develop a set of high-level design criteria that serve as a rubric for evaluating and

guiding their design efforts. In programming language design, particularly for scientific and

high-performance computing, there have been few concerted efforts to develop a coherent set

of design criteria that capture the needs of the targeted developer communities. Similarly,

there have been few treatments of adoption criteria for new languages and abstractions in

practice, an important issue given the slow rates of adoption today. As such, we organize

this section around a set of design and adoption criteria for new languages and abstractions

based on prior empirical studies of this class of professional end-user developer, as well as

our observations of characteristics common to successful projects in the past.

a. Design Criteria

We define design criteria as aspects of an abstraction or language’s specification, rather

than its implementation, that help developers express their intent naturally and correctly.

8



1) Concise, Familiar and Readable Syntax

Despite a considerable amount of evidence pointing toward the value of a well-designed

syntax, particularly for end-users in specialized domains (11), the issue is sometimes marginal-

ized. It is likely the case, however, that some libraries and languages experience low adoption

due in part due to the use of a verbose, unfamiliar or unreadable syntactic style.

A simple and concise syntax is common to most of the high-level languages that are widely

used in scientific computing. Cordy identifies the principle of conciseness with elimination of

redundancy and the availability of reasonable defaults (12). The high-level languages listed

above have all either made optional, or removed entirely, much of the syntactic overhead

characteristic of low-level languages, such as explicit variable declarations and extensive

headers or preambles that contain information that can be inferred from the body of the

program in most cases. They also typically feature simple array indexing syntax and concise

literal forms for common data structures like arrays, matrices, sets and maps. A concise and

minimal syntax eliminates unnecessary keystrokes and keeps more code visible on screen at

a time. Studies have shown that there may be a correlation between lines of code entered

and overall error rate, independent of other factors (13).

However, the benefits of concise syntax must be balanced with concerns about readability

and familiarity. A number of principles have been proposed to operationalize the notion

of code readability. The most widely-used collection of principles are Green’s cognitive

dimensions (14). Of particular relevance is the notion of self-consistency, which serves to

ensure that similar forms have similar meaning and that there are few subtle or context-

dependent distinctions that users must be mindful of. Another important principle has been

called closeness of mapping, expressing the value of a close correspondence between mental

models and the formal model as expressed concretely using the language.

Most researchers become familiar with formal notation by studying mathematics. In

nearly all commonly used languages in scientific computing, common mathematical notations

or close approximations thereof are generally used. In contrast, many academic languages

9



have settled on alternative notational styles. For example, the LISP family of languages

uses a highly uniform list-based notation, while most functional languages typically borrow

notation for function invocation from the lambda calculus, using the form f x rather than

f(x) for function invocation. Although both of these styles have certain benefits, they can

impose mental burdens on users who continue to mentally translate them into more familiar

notation (15). Although these and related difficulties can decrease with experience, they

remain an important barrier for new users to these languages.

Syntactic cues like whitespace and typography that do not have a formal meaning but

rather exist to assist developers are called secondary notation (16). Most languages are

whitespace-insensitive, while others (notably, Python) enforce consistent uses of whitespace,

both in pursuit of consistency and as a technique to eliminate the need for block delimiters.

Additionally, a few languages, such as Mathematica, have support for more typographically-

rich mathematical notation via a structural editing interface. This technique appears to be

helpful, although we do not know of formal studies that provide evidence for this claim.

2) Support for Multiple Paradigms and Abstractions

Although the difficulties of low-level and parallel programming are widely acknowledged,

there is little consensus on which high-level abstractions are most appropriate for easing this

burden. Indeed, it appears likely that no one abstraction will emerge triumphant over the

others. Although library-based abstractions are useful, they often suffer from limitations of

the language, particularly if they require compile-time support. Primitive language support

for a parallel abstraction has been shown to be more useful than a library-based implemen-

tation in at least one case (17). As such, it is important that a language support several

modes of operation, ideally without excessively favoring one over another.

Languages that have been designed specifically to explore a single abstraction as a core

language feature often see limited adoption because they remain difficult to use in circum-

stances for which the favored abstraction is inappropriate. Examples of these abstractions

10



and languages that feature them include:

• shared-memory concurrency (e.g. Java, C#)

• share-nothing message-passing (e.g. Erlang)

• flat data and task parallelism (e.g. OpenMP and OpenCL)

• nested data and task parallelism (e.g. NESL, Copperhead)

• transactional memory (e.g. the language described by Harris (18))

• automatic parallelization of functional primitives (e.g. Data Parallel Haskell, MapRe-

duce and others)

• (partitioned) global address spaces (e.g. UPC, Co-array Fortran, Global Arrays,

Fortress, X10, Chapel and others)

• adaptive thread migration (e.g. Charm++)

3) Extensibility

Although support for multiple paradigms and primitive abstractions can be built into a

language design, this leaves control in the hands of the language designer. Novel or domain-

specific constructs that may be useful to a small number of users or in rare situations can

be difficult to develop and distribute for this reason, leading to the proliferation of new

languages as described above. Language extensibility mechanisms support these use cases

by giving users the ability to develop new abstractions and constructs that behave as if they

were primitive constructs. If a mechanism is powerful enough, nearly all language constructs

may be implemented using it, greatly simplifying the core semantics of a language.

Dynamic languages commonly rely on mechanisms like operator overloading and metaob-

ject protocols (19) to provide extensibility via indirection. For example, the Python language

11



allows objects to overload nearly every operator and as well as operations like attribute

lookup (obj.attr) and assignment. This mechanism is used by a number of libraries to

create a more natural interface to a low-level API (e.g. pycuda). More open-ended dynamic

mechanisms, such as programmatic macros, have also been widely studied but as of yet have

seen little adoption in languages used by professional end-users.

Language extensibility for statically-typed languages, on the other hand, remains an

active research area. Compile-time metaprogramming systems, which are related to pro-

grammatic macros, have been developed for a number of languages (e.g. Template Haskell

(20)) but these too have seen relatively limited development or adoption thus far.

Some researchers have advocated the use of compiler extension mechanisms, rather than

mechanisms built into a language itself (cf. (21)). Modern compilers now offer some support

for front-end language extensions, although often these can be quite difficult to use. Although

potentially powerful, this approach can also lead to issues when extensions are not easily

composable or when multiple compilers exist for a language. Back-end extensions (that is,

extensions that preserve the semantics of the language, improving only performance) are

better supported in modern compilers.

Domain-specific language frameworks are a related approach that can serve many of the

same goals as language-based extension mechanisms (22). These tools ease the development

of “little languages” and allow for the development and distribution of language features

as modules. Domain experts use these tools to develop highly specialized languages that

capture domain requirements precisely and allow for natural and concise specifications of

scientific models and other structures. A major issue with this approach arises at language

boundaries – interoperability between different domain-specific languages is difficult due to

feature mismatches. Another issue is that domain-specific languages often outgrow their

initial implementations and begin to need increasingly powerful general-purpose features.

All extensibility mechanisms must be used carefully. Indeed, inexperienced developers

can abuse mechanisms like operator overloading to create inscrutable interfaces that cause

12



more problems than they solve. Some languages (notably Java) have taken up the philosophy

that even simple language extension mechanisms should not be in the hands of end-users

for this reason. Although this continues to be debated, we argue that extensibility is crucial

for parallel and scientific programming in particular due to the significant levels of ongoing

research into new parallel abstractions and the diverse set of domain-specific use cases.

4) Support for Higher-Order Constructs

A number of parallel programming data structures and algorithms are of higher-order,

meaning that they take other functions or types as arguments or parameters. We argue that

support for higher-order programming is critical to language usability in our target domains.

Well-known examples of functions that operate using other functions include fundamental

parallel primitives like map, reduce and scan. Fortunately, most modern languages now sup-

port using functions as values. Languages like C and Fortran implement this using function

pointers, although at considerable syntactic expense. However, unlike functional languages

and most dynamic languages, they do not allow anonymous functions (that is, functions

that are defined as inline expressions rather than statements), nor functions that close over

variables in the surrounding scope. The most recent revision of C++ now has support for

closures and closures are also being considered for a future revision of Java. OpenCL does

not come with any support for higher-order functions, even via function pointers.

Functions and types that are parameterized by types are often referred to as polymorphic

or generic. C++ supports this using its template system. Java, ML and Haskell support

a simpler form of parametric polymorphism, and Haskell also supports a more flexible type

class system. C++, Java and Fortran also support function overloading, allowing multiple

versions of a function that differ only according to their argument types. C and OpenCL do

not support any form of polymorphism or user-defined function overloading.

Dynamic languages do not require that variables be assigned a type, so generic functions

are written using run-time checks that ensure that a particular value supports the specific

13



interface that a function expects. This is sometimes known as “duck typing” and is generally

considered as a useful feature, due to its considerable flexibility. A promising approach that

resembles duck typing, while operating statically, is known as structural typing (23).

5) Modularity and Packaging

Modularity is a broad term that refers to mechanisms useful for combining and reusing

independently developed libraries of code. Languages with good support for modularity

promote information hiding, thus localizing the effect of code changes, and allow modules

to communicate over well-defined interfaces. There remains widespread disagreement and

considerable ongoing research on language support for modularity. Object-oriented method-

ologies, although common in industrial projects, are used less frequently in scientific codes

due to a perceived loss of control and performance (10). Many dynamic languages support

modularity only implicitly using duck typing. Functional languages, on the other hand, often

have module systems that enforce correct usage of an interface at compile-time, albeit at

some notational cost (24).

The packaging and linking mechanisms available in a language can also significantly

impact its usability. Languages like C and C++ use a fragile preprocessor-based packag-

ing mechanism and require separate header files, which often leads to subtle errors and

compilation inefficiencies. More recent high-level languages have developed a varied set of

mechanisms that are significantly simpler for packaging and deployment.

6) Verifiability

Verifying that a program does not contain errors and that it will operate according to

specification (if a specification exists, which can be rare in this domain (5)) is a critical

concern across all areas of software development. Errors in scientific programs may arise

due to problems in basic program logic, as in other domains, but also due to the accumu-

14



lation of numerical approximation errors or by violation of domain-specific constraints (e.g.

inconsistent scientific units.)

A number of design decisions can influence the difficulty of formal program verification.

Broadly stated, unconstrained support for dynamic indirection and direct access to memory

have made program verification more difficult in many commonly-used languages. As a

result, many classes of errors are only caught at run-time, often due to edge cases that are

difficult to test for.

Advanced type systems, matched with appropriately constrained data structures and

control constructs, can dramatically increase the likelihood that an error is found at compile-

time and even eliminate entire classes of errors (24). A large portion of academic research on

programming language design has focused on designing such type systems. Unfortunately,

as with many new parallel abstractions, these generally require that a language be modified

with new primitives and most work has either been with prototype languages or functional

languages like Ocaml, Haskell or Coq, which, due to some of the factors mentioned here,

have seen limited (though growing) adoption in scientific computing so far.

In the absence of a formal proof of correctness, users must test programs with specific

inputs, relying both on language-provided run-time checks and user-provided run-time as-

sertions to catch errors. Most languages have unit testing frameworks designed to minimize

the burden of developing unit tests, though these are used infrequently in science (5; 2).

Several languages (e.g. Eiffel) also have support for specifying pre- and post-conditions for

functions, so that the assertions that must hold about arguments are visible in the function

signature, but this feature has not been well-supported by widely-used languages to date.

b. Adoption Criteria

While most of the design criteria described in the previous section have been the topic

of significant (and ongoing) research, there are a number of other, more practical issues

that can significantly affect adoption of a new language or tool. It should be noted that

15



certain design decisions may make it easier to satisfy these adoption to criteria as well, an

important consideration given that incentive structures in academia often do not reward

efforts to improve a language along some of the following dimensions (1).

1) Performance

Performance is, of course, a critical concern in scientific and (particularly (10)) high-

performance computing. Low-level languages typically elect to give the user direct access to

hardware primitives. High-level languages must rely on a sophisticated compiler to translate

high-level abstractions into performant code. Although the latter approach would be ideal,

program optimization remains an active research area with many open problems. Indeed,

many relevant algorithms have been shown to be NP-Complete, so compilers must rely

on heuristics. Humans remain better at inventing and applying heuristics, given enough

motivation and experience, than computers in many cases. Indeed, even when the compiler

can sometimes produce better optimizations, users generally insist on being able to form a

mental model of what their code is doing at the machine-level so that they can reason about

the effects of code changes on overall performance (25). As such, users generally demand

that low-level abstractions remain available alongside high-level abstractions. It may also

be useful to support a model where programmers can formalize, package and directly apply

optimization heuristics programmatically, rather than relying on a “black-box” compiler.

2) Portability

A number of surveys have revealed that portability is one of the most important issues

considered by scientists and engineers (2)(10). Several processor architectures and operating

systems are in widespread use, with more appearing on a fairly regular basis. Low-level

languages like C have generally achieved a reasonable level of portability, although aspects

of the language that are underspecified can be a source of errors. The OpenCL language

16



was designed with portability as a major design criteria, and compilers for OpenCL are

now available for a diverse collection of processor and accelerator architectures. High-level

languages are generally highly portable due to the use of a virtual machine architecture.

It should be noted, however, that simple portability is not entirely sufficient – users want

to be able to write programs that can be ported to new architectures and operating systems

and achieve high performance without significant retuning. This remains an area of active

research. Recent efforts to build abstractions that generate efficient code for devices with

multi-level memories, as implemented in the Sequoia language (26), have progressed toward

this goal.

3) Useful Error Messages

When the compiler or run-time system of a language generates an error, users must

determine the source of the problem using the information provided in an error message.

Studies have shown that good error messages can dramatically reduce the time it takes to

debug programs (27). Indeed, a widely-reported frustration with C++ is that it produces

overly verbose and cryptic error messages, particularly when using templates.

4) Tool and Infrastructure Support

Modern software development now relies on a number of tools to assist with common

tasks, such as debuggers, profilers, syntax-aware editors, documentation generators, style

checkers and interactive interpreters. Similarly, most established languages benefit from a

centralized package repository (e.g. PyPI) paired with a package manager that can automate

the installation of new packages. These tools and infrastructure are not trivial to develop

from scratch, and few incentives exist for researchers to do so, but few users are willing to

do without these tools for non-trivial projects (25).

17



5) Backwards Compatibility

End-user communities have produced a number of highly tuned and tested packages that

are widely used in their fields. Porting these libraries to a new language requires significant

effort and few communities will be willing to do so, particularly before a language is very

well established. There is generally a greater willingness to develop wrappers that invoke

functions from these packages, however. A powerful foreign function interface, ideally able

to handle native code as well as code in existing widely-used high-level languages, enables

these efforts to proceed smoothly and can provide a language with a large package library

relatively early in its development.

Many of the reasonably successful approaches to date are built incrementally on existing

languages as libraries or as simple extensions to existing languages (e.g. OpenMP, UPC, Co-

array Fortran, Cilk++, MPI, CUDA, OpenCL). Notably, this allows existing programs to

continue to function correctly, while enabling the gradual integration of the new constructs

in parts of the code that would derive the greatest benefit. In contrast, approaches that have

required total rewrites have had more difficulty recruiting early adopters (e.g. X10 (28).)

6) Learning Material

Existing languages benefit from a large collection of books, presentations and tutorials

that allow new users to get started quickly. The most mature languages benefit further from

the availability of courses and professional training seminars. New languages often suffer

due to the lack of such polished learning material, or in some cases, due to the lack of any

significant learning material targeted at end users (rather than other language designers.)

7) Open Availability

New languages and abstractions are often viewed with suspicion if they do not come with

source code that can be modified under a free software license. The most unencumbered

18



licenses (other than public domain releases) are BSD-style licenses. So called copyleft licenses

like the GPL are also popular, requiring primarily that modifications to the compiler be

distributed under the same license.

8) Social Proof

Finally, users look to the language’s user community for evidence that the language is a

serious effort that will not be abandoned and that there are other developers building libraries

and sharing information over established communication channels. The availability of non-

trivial demonstrations have been cited in surveys as critical to adoption as well (10). These

criteria, as with many of the others described above, can be difficult to satisfy, particularly

for “clean-slate” language designs, which may help to explain why language adoption is often

slow. However, even projects with a narrower scope, such as new parallel or domain-specific

abstractions, must tackle these issues. Funding agencies can aid in adoption by guaranteeing

development will be supported for a number of years for languages that appear to have the

greatest promise.

19



REFERENCES

[1] J. Howison and J.D. Herbsleb. Scientific software production: incentives and collabo-

ration. In Proceedings of the ACM 2011 conference on Computer supported cooperative

work, pages 513–522. ACM, 2011.

[2] J.E. Hannay, C. MacLeod, J. Singer, H.P. Langtangen, D. Pfahl, and G. Wilson. How

do scientists develop and use scientific software? In Proceedings of the 2009 ICSE

Workshop on Software Engineering for Computational Science and Engineering, pages

1–8. IEEE Computer Society, 2009.

[3] G.E. Moore et al. Cramming more components onto integrated circuits. Proceedings of

the IEEE, 86(1):82–85, 1998.

[4] Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio, Jean-

Claude Andre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand Braun-

schweig, Franck Cappello, Barbara Chapman, Xuebin Chi, Alok Choudhary, Sudip

Dosanjh, Thom Dunning, Sandro Fiore, Al Geist, Bill Gropp, Robert Harrison, Mark

Hereld, Michael Heroux, Adolfy Hoisie, Koh Hotta, Yutaka Ishikawa, Zhong Jin, Fred

Johnson, Sanjay Kale, Richard Kenway, David Keyes, Bill Kramer, Jesus Labarta,

Alain Lichnewsky, Thomas Lippert, Bob Lucas, Barney Maccabe, Satoshi Matsuoka,

Paul Messina, Peter Michielse, Bernd Mohr, Matthias Mueller, Wolfgang Nagel, Hiroshi

Nakashima, Michael E. Papka, Dan Reed, Mitsuhisa Sato, Ed Seidel, John Shalf, David

Skinner, Marc Snir, Thomas Sterling, Rick Stevens, Fred Streitz, Bob Sugar, Shinji

Sumimoto, William Tang, John Taylor, Rajeev Thakur, Anne Trefethen, Mateo Valero,

Aad van der Steen, Jeffrey Vetter, Peg Williams, Robert Wisniewski, and Kathy Yelick.

The international exascale software project roadmap.

20



[5] Judith Segal. Models of scientific software development, May 2008.

[6] J. Segal. Some problems of professional end user developers. In Proceedings of the IEEE

Symposium on Visual Languages and Human-Centric Computing, pages 111–118. IEEE

Computer Society, 2007.

[7] Bernd Mohr. Survey of system software stacks in the iesp community.

[8] L. Nguyen-Hoan, S. Flint, and R. Sankaranarayana. A survey of scientific software devel-

opment. In Proceedings of the 2010 ACM-IEEE International Symposium on Empirical

Software Engineering and Measurement, page 12. ACM, 2010.

[9] J.C. Carver, R.P. Kendall, S.E. Squires, and D.E. Post. Software development envi-

ronments for scientific and engineering software: A series of case studies. In Software

Engineering, 2007. ICSE 2007. 29th International Conference on, pages 550 –559, may

2007.

[10] V.R. Basili, J.C. Carver, D. Cruzes, L.M. Hochstein, J.K. Hollingsworth, F. Shull,

and M.V. Zelkowitz. Understanding the high-performance-computing community: A

software engineer’s perspective. Software, IEEE, 25(4):29–36, 2008.

[11] J.F. Pane and B.A. Myers. Usability issues in the design of novice programming systems.

Citeseer, 1996.

[12] J.R. Cordy. Hints on the design of user interface language features: lessons from the

design of turing. In Languages for developing user interfaces, pages 329–340. AK Peters,

Ltd., 1992.

[13] K. El Emam, S. Benlarbi, N. Goel, and S.N. Rai. The confounding effect of class size on

the validity of object-oriented metrics. Software Engineering, IEEE Transactions on,

27(7):630–650, 2001.

21



[14] T.R.G. Green and M. Petre. Usability analysis of visual programming environments:

A ’cognitive dimensions’ framework. Journal of Visual Languages and Computing,

7(2):131–174, 1996.

[15] J.R. Anderson and R. Jeffries. Novice lisp errors: Undetected losses of information from

working memory. Human-Computer Interaction, 1(2):107–131, 1985.

[16] TRG Green. Programming languages as information structures, 1990.

[17] V. Cavé, Z. Budimlić, and V. Sarkar. Comparing the usability of library vs. language

approaches to task parallelism. In Evaluation and Usability of Programming Languages

and Tools, page 9. ACM, 2010.

[18] T. Harris and K. Fraser. Language support for lightweight transactions. In ACM

SIGPLAN Notices, volume 38, pages 388–402. ACM, 2003.

[19] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the Metaobject

Protocol. MIT Press, Cambridge, MA, 1991.

[20] T. Sheard and S.P. Jones. Template meta-programming for haskell. ACM SIGPLAN

Notices, 37(12):60–75, 2002.

[21] A.T. Clements. A comparison of designs for extensible and extension-oriented compilers.

PhD thesis, Citeseer, 2008.

[22] M. Fowler and R. Parsons. Domain-Specific Languages. Addison-Wesley Professional,

2010.

[23] D. Malayeri and J. Aldrich. Is structural subtyping useful? an empirical study. Pro-

gramming Languages and Systems, pages 95–111, 2009.

[24] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

22



[25] S. Squires, WG Tichy, and L. Votta. What do programmers of parallel machines need? a

survey. In Second Workshop on Productivity and Performance in High-End Computing

(P-PHEC), 2005.

[26] K. Fatahalian, D.R. Horn, T.J. Knight, L. Leem, M. Houston, J.Y. Park, M. Erez,

M. Ren, A. Aiken, W.J. Dally, et al. Sequoia: programming the memory hierarchy. In

Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, pages 83–es. ACM,

2006.

[27] G. Marceau, K. Fisler, and S. Krishnamurthi. Measuring the effectiveness of error

messages designed for novice programmers. In Proceedings of the 42nd ACM technical

symposium on Computer science education, pages 499–504. ACM, 2011.

[28] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,

C. Von Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform cluster

computing. In ACM SIGPLAN Notices, volume 40, pages 519–538. ACM, 2005.

23


