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The Euler Top

Consider an asymmetric rigid body free to rotate but, not translate with principal
moments of inertia: I1, I2, I3. Configuration space is SO(3). Dynamics governed
by conservation of spatial angular momentum:

π̇ = 0

Transform to variables fixed in the body via,

π = RΠ

where R ∈ SO(3) which represents current configuration of the body, and Π is the
body angular momentum.

Conservation of spatial angular momentum as viewed from the body yields Euler’s
equations,

Π̇ = Π×Ω

where Ω is the body angular velocity which satisfies

Π = IΩ

and I is the diagonal inertia tensor with components I1, I2, I3.

Euler’s equations conserve energy:

H =
1

2
ΩT IΩ

& modulus of body angular momentum:

J = ‖Π‖

.. −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

.. −1

−0.5

0

0.5

1

−0.5

0

0.5

−1

−0.5

0

0.5

1

.. −1

−0.5

0

0.5

1

−0.5

0

0.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

The body angular momentum vector, Π, evolves on the intersection of the momen-
tum sphere and energy ellipsoid as shown above for unit momentum and energy:
E = 0.225, 0.25, 0.275.

Poinsot’s Theorem

Represents motion of the free rigid body as motion of the inertia ellipsoid, E ,
defined as

E = {u ∈ R3 : φ(u) = uTRIRTu/2 = E}

with contact vector given by the spatial angular velocity, ω = RΩ, rolling on
the plane whose normal is defined by the spatial angular momentum vector π. See
Marsden and Ratiu [1999] for proof.

The herpolhode curve is the trajectory of the body angular momentum vector
projected on the plane with normal given by π.

Herpolhode Curves

The body angular momentum is periodic with period T . Since, Π = IΩ the body
angular velocity is periodic with period T . Is the spatial angular velocity periodic
with period T as well? No!
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The herpolhode curve from [0, T ) is outlined in green and from upper left [nT, (n+
1)T ) for n = 1, ..., 6 is outlined in cyan.

Since the body angular velocity is periodic with period T ,

Ω(t+T ) = RT (t+T )ω(t+T ) = RT (t)ω(t) = Ω(t) =⇒ ω(t+T ) = R(t+T )RT (t)ω(t)

Claim: R(t+ T )RT (t) is a rotation about the spatial angular momentum vector.

The spatial angular momentum is fixed and body angular momentum is periodic
with period T , therefore,

Π(t+ T ) = RT (t+ T )π = RT (t)π = Π(t) =⇒ R(t)RT (t+ T )π = π

Thus, R(t)RT (t+ T ) is a rotation about π. What is the rotation angle?

Goodman-Robinson-Montgomery Rigid Body Phase Formula

After one period of motion, the spatial angular velocity gets rotated about the spa-
tial angular momentum by an amount given by the rigid body phase formula,

∆θ =
2ET

M
− Λ (1)

where H = E, J = M , T is the period of the body angular momentum, and Λ is
the surface area enclosed by the intersection of the ellipsoid and sphere. See Levi
[1993] for a proof based on the Gauss-Bonnet formula and Montgomery [1991] for
a proof based on Stokes’ theorem.

After every period of the body angular momentum, the herpolhode curve in the
plane gets rotated by the amount given by the rigid body phase formula. Specifi-
cally, the herpolhode curve h(t) satisfies,

h(t+ T ) =





cos(∆θ) − sin(∆θ)

sin(∆θ) cos(∆θ)



h(t)

for t ∈ [0, T ), where T is the period of the body angular momentum Π, and ∆θ is
rigid body phase (1).

Reconstruction to Physical Variables

Is a vector fixed in the body periodic with period T? No!

After every period of the body angular momentum, an axis fixed in the rigid body
is rotated about the spatial angular momentum vector by the amount given by the
rigid body phase formula. Specifically, for an axis n(t) fixed in the rigid body,

n(t+ T ) = Rπ(∆θ)n(t)

for t ∈ [0, T ), where T is the period of the body angular momentum Π, Rx(φ) is
the rotation matrix with rotation axis x and rotation angle φ, and ∆θ is the rigid
body phase (1).
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L-R: the trajectories of the intermediate principal axis of the free rigid body j(t)
from [0, T ) and [0, 2T ).

Book Toss

When a free rigid body, e.g. a book, is tossed about its intermediate axis, the book
typically undergoes a half-twist before catching it. Why does this happen?

After one cycle of the book toss or half a period of the body angular momentum Π,
the rigid body phase reconstruction theorem approximately predicts a 180-degree
flip in the book as depicted below. See Ashbaugh, Chicone, and Cushman [1990]
for an explanation based on special functions.

L-R: the initial and final snapshots of the book are shown for a simulation over
half a period of the body angular momentum Π. The black line represents the
orientation of the spatial angular momentum vector. The green line represents the
unit vector in the direction of the intermediate axis in the body.
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